J.F. COSSUTTA

jean-francois.cossutta@wanadoo.fr

Ceci est un premier jet et a besoin encore de beaucoup relectures pour bien tenir la route. Si vous voyez des erreurs contactez moi.

ECRICOME 2014

EXERCICE 1

1. Notons E' le \mathbb{R} -espace vectoriel des applications de \mathbb{R}_+^* dans \mathbb{R} .

Notons que E est une partie de E' et que $(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$ est une famille d'éléments de E'.

Soit f un élément de E'.

$$f \in E \iff \exists (P,Q) \in \mathbb{R}_{n-1}[X] \times \mathbb{R}_{n-1}[X], \ \forall x \in \mathbb{R}_+^*, \ f(x) = x P(x) + x \ln(x) Q(x).$$

$$f \in E \iff \exists (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n, \ \exists (b_0, b_1, \dots, b_{n-1}) \in \mathbb{R}^n, \ \forall x \in \mathbb{R}^*_+, \ f(x) = x \left(\sum_{k=0}^{n-1} a_k x^k\right) + x \ln(x) \left(\sum_{k=0}^{n-1} b_k x^k\right).$$

$$f \in E \iff \exists (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n, \ \exists (b_0, b_1, \dots, b_{n-1}) \in \mathbb{R}^n, \ \forall x \in \mathbb{R}^*_+, \ f(x) = \sum_{k=0}^{n-1} a_k x^{k+1} + \ln(x) \left(\sum_{k=0}^{n-1} b_k x^{k+1}\right).$$

$$f \in E \iff \exists (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n, \ \exists (b_0, b_1, \dots, b_{n-1}) \in \mathbb{R}^n, \ \forall x \in \mathbb{R}^*_+, \ f(x) = \sum_{k=1}^n a_{k-1} x^k + \ln(x) \left(\sum_{k=1}^n b_{k-1} x^k\right).$$

$$f \in E \iff \exists (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n, \ \exists (b_0, b_1, \dots, b_{n-1}) \in \mathbb{R}^n, \ \forall x \in \mathbb{R}^*_+, \ f(x) = \sum_{k=1}^n a_{k-1} x^k + \sum_{k=1}^n b_{k-1} (x^k \ln(x)).$$

$$f \in E \iff \exists (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n, \ \exists (b_0, b_1, \dots, b_{n-1}) \in \mathbb{R}^n, \ \forall x \in \mathbb{R}^*_+, \ f(x) = \sum_{k=1}^n a_{k-1} u_k(x) + \sum_{k=1}^n b_{k-1} v_k(x).$$

$$f \in E \iff \exists (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n, \ \exists (b_0, b_1, \dots, b_{n-1}) \in \mathbb{R}^n, \ \forall x \in \mathbb{R}^*_+, \ f(x) = \left(\sum_{k=1}^n a_{k-1} u_k + \sum_{k=1}^n b_{k-1} v_k\right)(x).$$

$$f \in E \iff \exists (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n, \ \exists (b_0, b_1, \dots, b_{n-1}) \in \mathbb{R}^n, \ f = \sum_{k=1}^n a_{k-1} u_k + \sum_{k=1}^n b_{k-1} v_k.$$

$$f \in E \iff f \in \text{Vect}(u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n,).$$

$$f \in E \iff f \in \text{Vect}(u_1, v_1, u_2, v_2, \dots, u_n, v_n).$$

Par conséquent : $E = \text{Vect}(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$.

Alors E est le sous-espace vectoriel de E' engendré par la famille $(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$ de E'. Finalement :

$$E$$
 est un \mathbb{R} -espace vectoriel et $E = \text{Vect}(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$.

- ▶ Exercice Montrons que la famille $(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$ est libre. \blacktriangleleft
 - **2.** Soit f un élément de E. Comme $E = \text{Vect}(u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n)$, il existe deux éléments $(\alpha_1, \alpha_2, \dots, \alpha_n)$ et $(\beta_1, \beta_2, \dots, \beta_n)$ de \mathbb{R}^n tels que : $f = \sum_{k=1}^n \alpha_k u_k + \sum_{k=1}^n \beta_k v_k$.

 $\forall k \in [1, n], \ \forall x \in \mathbb{R}_+^*, \ u_k(x) = x^k \text{ et } v_k = x^k \ln(x).$ Donc pour tout élement k de $[1, n], u_k$ et v_k sont continues sur \mathbb{R}_+^* .

De plus pour tout k dans [1, n], $\lim_{x \to 0^+} u_k = \lim_{x \to 0^+} x^k = 0$ et $\lim_{x \to 0^+} v_k = \lim_{x \to 0^+} \left(x^k \ln(x)\right) = 0$ (par croissance comparée...). Alors:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\sum_{k=1}^n \alpha_k u_k + \sum_{k=1}^n \beta_k v_k \right) (x) = \lim_{x \to 0^+} \left(\sum_{k=1}^n \alpha_k u_k(x) + \sum_{k=1}^n \beta_k v_k(x) \right) = \sum_{k=1}^n \alpha_k \times 0 + \sum_{k=1}^n \beta_k \times 0.$$

Ainsi $\lim_{x \to 0^+} f(x) = 0$.

Ainsi f est continue sur \mathbb{R}_+^* et prolongeable par continuité en 0.

Chaque fonction f de E se prolonge en une fonction continue sur \mathbb{R}_+ .

- ▶ Remarque 1 On aurait pu aussi utiliser " $f(x) = x P(x) + x \ln x Q(x)$ " pour montrer ce résultat ◀
- ▶ Remarque 2 Soit f un élément de E. f se prolonge en une fonction continue sur R_+ que nous noterons \hat{f} dans la suite.

Comme
$$\lim_{x\to 0^+} f(x) = 0$$
, $\widehat{f}(0) = 0$. Ainsi $\forall x \in \mathbb{R}_+$, $\widehat{f}(x) = \begin{cases} f(x) & \text{si } x \in \mathbb{R}_+^* \\ 0 & \text{si } x = 0 \end{cases}$.

Ce qui précède permet aussi de dire que, pour tout x dans \mathbb{R}_+^* , $\int_0^x f(t) dt$ converge et vaut $\int_0^x \widehat{f}(t) dt$.

Ainsi, pour tout x dans \mathbb{R}_+^* , $\frac{1}{x} \int_0^x f(t) dt$ existe et vaut $\frac{1}{x} \int_0^x \widehat{f}(t) dt$. Alors $\varphi(f)(x)$ est définie pour tout x dans \mathbb{R}_+^* .

Finalement $\varphi(f)$ est bien une application de \mathbb{R}_+^* dans \mathbb{R} et ceci pour tout f dans E.

 φ est donc une application du \mathbb{R} -espace vectoriel E dans le \mathbb{R} -espace vectoriel E'.

Soit k un élément de [1, n].

• $\forall x \in \mathbb{R}_+^*$, $\widehat{u_k}(x) = u_k(x) = x^k$ et $\widehat{u_k}(0) = 0$ donc $\forall x \in \mathbb{R}_+$, $\widehat{u_k}(x) = x^k$.

Alors
$$\forall x \in \mathbb{R}_+^*$$
, $\varphi(u_k)(x) = \frac{1}{x} \int_0^x u_k(t) dt = \frac{1}{x} \int_0^x \widehat{u_k}(t) dt = \frac{1}{x} \int_0^x t^k dt = \frac{1}{x} \left[\frac{t^{k+1}}{k+1} \right]_0^x = \frac{1}{x} \frac{x^{k+1}}{k+1} = \frac{1}{k+1} x^k$.

Ainsi
$$\forall x \in \mathbb{R}_+^*$$
, $\varphi(u_k)(x) = \left(\frac{1}{k+1}u_k\right)(x)$. Donc $\varphi(u_k) = \frac{1}{k+1}u_k$.

• Soit x dans \mathbb{R}_+^* . Soit ε un élément de $]0, +\infty[$.

$$w_k: t \to \frac{1}{k+1} t^{k+1}$$
 et $h: t \to \ln(t)$ sont de classes \mathcal{C}^1 sur $]0, +\infty[$. De plus $\forall t \in \mathbb{R}^*_+, \ w_k'(t) = t^k$ et $h'(t) = \frac{1}{t}$

Ceci autorise l'intégration par parties suivante.
$$\int_{\varepsilon}^{x} v_k(t) dt = \int_{\varepsilon}^{x} t^k \ln(t) dt = \left[\frac{t^{k+1}}{k+1} \ln(t) \right]_{\varepsilon}^{x} - \int_{\varepsilon}^{x} \frac{t^{k+1}}{k+1} \frac{1}{t} dt.$$

$$\int_{\varepsilon}^{x} v_k(t) \, \mathrm{d}t = \frac{1}{k+1} \, x^{k+1} \, \ln(x) - \frac{1}{k+1} \, \varepsilon^{k+1} \, \ln(\varepsilon) - \int_{\varepsilon}^{x} \frac{t^k}{k+1} \, \mathrm{d}t = \frac{1}{k+1} \, x^{k+1} \, \ln(x) - \frac{1}{k+1} \, \varepsilon^{k+1} \, \ln(\varepsilon) - \left[\frac{t^{k+1}}{(k+1)^2}\right]_{\varepsilon}^{x}.$$

$$\int_{\varepsilon}^{x} v_k(t) dt = \frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(\varepsilon) - \frac{x^{k+1}}{(k+1)^2} + \frac{\varepsilon^{k+1}}{(k+1)^2}$$

$$\int_0^x v_k(t) dt = \lim_{\varepsilon \to 0^+} \int_\varepsilon^x v_k(t) dt = \lim_{\varepsilon \to 0^+} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(\varepsilon) - \frac{x^{k+1}}{(k+1)^2} + \frac{\varepsilon^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(\varepsilon) - \frac{x^{k+1}}{(k+1)^2} + \frac{\varepsilon^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(\varepsilon) - \frac{x^{k+1}}{(k+1)^2} + \frac{\varepsilon^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(\varepsilon) - \frac{x^{k+1}}{(k+1)^2} + \frac{\varepsilon^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(\varepsilon) - \frac{x^{k+1}}{(k+1)^2} + \frac{\varepsilon^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(\varepsilon) - \frac{x^{k+1}}{(k+1)^2} + \frac{\varepsilon^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{k+1} \varepsilon^{k+1} \ln(x) - \frac{x^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{x^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{x^{k+1}}{(k+1)^2} \right) \cdot \frac{1}{k+1} \left(\frac{x^{k+1}}{(k+1)^2} + \frac{x^{k+1}}{(k+1)^2} \right) \cdot \frac{x^{k+1}}{(k+1)^2} \cdot \frac{x^{k$$

Alors
$$\varphi(v_k)(x) = \frac{1}{x} \int_0^x v_k(t) dt = \frac{1}{x} \left(\frac{1}{k+1} x^{k+1} \ln(x) - \frac{1}{(k+1)^2} x^{k+1} \right) = \frac{1}{k+1} x^k \ln(x) - \frac{1}{(k+1)^2} x^k$$
.

$$\varphi(v_k)(x) = \frac{1}{k+1} v_k(x) - \frac{1}{(k+1)^2} u_k(x) = \left(\frac{1}{k+1} v_k - \frac{1}{(k+1)^2} u_k\right)(x) \text{ et ceci pour tout } x \text{ dans } \mathbb{R}_+^*.$$

Donc
$$\varphi(v_k) = \frac{1}{k+1} v_k - \frac{1}{(k+1)^2} u_k$$
.

Pour tout
$$k$$
 dans $[1, n]$, $\varphi(u_k) = \frac{1}{k+1} u_k$ et $\varphi(v_k) = \frac{1}{k+1} v_k - \frac{1}{(k+1)^2} u_k$.

3. Rappelons que φ est une application du \mathbb{R} -espace vectoriel E dans le \mathbb{R} -espace vectoriel E'.

Soit λ un réel. Soient f et g deux éléments de E.

$$\forall x \in \mathbb{R}_+^*, \ \varphi(\lambda f + g)(x) = \frac{1}{x} \int_0^x (\lambda f + g)(t) \, \mathrm{d}t = \lambda \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t + \frac{1}{x} \int_0^x g(t) \, \mathrm{d}t \text{ car toutes les intégrales convergent.}$$

$$\forall x \in \mathbb{R}_+^*, \ \varphi(\lambda f + g)(x) = \lambda \varphi(f)(x) + \varphi(g)(x) = (\lambda \varphi(f) + \varphi(g))(x) \ \text{donc} \ \varphi(\lambda f + g) = \lambda \varphi(f) + \varphi(g).$$

Ainsi $\forall \lambda \in \mathbb{R}, \ \forall (f,g) \in E^2, \ \varphi(\lambda \, f + g) = \lambda \, \varphi(f) + \varphi(g).$ Par conséquent :

$$\varphi$$
 est linéaire.

Rappelons que pour tout
$$k$$
 dans $[1, n]$, $\varphi(u_k) = \frac{1}{k+1} u_k$ et $\varphi(v_k) = \frac{1}{k+1} v_k - \frac{1}{(k+1)^2} u_k$.

Ainsi pour tout k dans [1, n], $\varphi(u_k)$ et $\varphi(v_k)$ sont des éléments de $\text{Vect}(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$.

Alors Vect $(\varphi(u_1), \varphi(v_1), \varphi(u_2), \varphi(v_2), \dots, \varphi(u_n), \varphi(v_n))$ est contenu dans Vect $(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$.

Soit f un élément de E. f est combinaison linéaire de $(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$.

Comme φ est linéaire, $\varphi(f)$ est combinaison linéaire de $(\varphi(u_1), \varphi(v_1), \varphi(u_2), \varphi(v_2), \dots, \varphi(u_n), \varphi(v_n))$.

Donc $\varphi(f)$ appartient à Vect $(\varphi(u_1), \varphi(v_1), \varphi(u_2), \varphi(v_2), \dots, \varphi(u_n), \varphi(v_n))$.

Ainsi $\varphi(f)$ appartient à $Vect(u_1, v_1, u_2, v_2, \dots, u_n, v_n)$ donc à E.

Si f est une fonction de E, $\varphi(f)$ est une fonction de E.

- ightharpoonup Remarque Ainsi on peut considérer que φ est un endomorphisme de E.
 - **4.** Rappelons que $\mathcal{B} = (u_1, v_1, u_2, v_2, \dots, u_n, v_n)$ est une base de E et qu'ainsi E est de dimension 2n.

Pour tout
$$k$$
 dans $[1, n]$, $\varphi(u_k) = \frac{1}{k+1} u_k$ et $\varphi(v_k) = \frac{1}{k+1} v_k - \frac{1}{(k+1)^2} u_k$.

Pour tout
$$k$$
 dans $[\![1,n]\!]$ notons alors T_k la matrice $\begin{pmatrix} \frac{1}{k+1} & -\frac{1}{(k+1)^2} \\ 0 & \frac{1}{k+1} \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$.

Alors la matrice de
$$\varphi$$
 dans la base \mathcal{B} est la matrice diagonale par blocs égale à
$$\begin{pmatrix} T_1 & & & & \\ & T2 & & & (0) & & \\ & & \ddots & & \\ & & & & T_{n-1} & \\ & & & & & T_n \end{pmatrix}$$

Alors la matrice de
$$\varphi$$
 dans la base $\mathcal B$ est la matrice diagonale par blocs égale à
$$\begin{pmatrix} T_1 & & & & \\ & T2 & & & (0) & & \\ & & \ddots & & & \\ & & & (0) & & T_{n-1} & \\ & & & & T_n \end{pmatrix}$$
 où pour tout k dans $\llbracket 1,n \rrbracket$ $T_k = \begin{pmatrix} \frac{1}{k+1} & -\frac{1}{(k+1)^2} \\ 0 & \frac{1}{k+1} \end{pmatrix}$.

5. La matrice de φ est une matrice triangulaire supérieure. Alors l'ensemble de ses valeurs propres est l'ensemble de ses éléments diagonaux.

Cet ensemble est $\left\{\frac{1}{k+1} ; k \in [\![1,n]\!]\right\}$ et il ne contient pas zéro. 0 n'est pas valeur propre de M donc M est inversible

et alors φ est un automorphisme de E. Ajoutons que $\operatorname{Sp} \varphi = \operatorname{Sp} M = \left\{ \frac{1}{k+1} \; ; \; k \in \llbracket 1, n \rrbracket \right\}$.

L'endomorphisme φ de E est bijectif. L'ensemble des valeurs propres de φ est $\left\{\frac{1}{k+1}\;;\;k\in\llbracket 1,n\rrbracket\right\}$.

6. Rappelons que λ est un élément de $\left\{\frac{1}{k+1} \; ; \; k \in [\![1,n]\!]\right\}$. En particulier λ n'est pas nul.

$$\forall x \in \mathbb{R}_+^*, \ g(x) = x^{-1/\lambda} \int_0^x f(t) \, dt = x^{-1/\lambda} \int_0^x \widehat{f}(t) \, dt.$$

 \widehat{f} est une application continue de $[0, +\infty[$ dans \mathbb{R} . Alors $x \to \int_0^x \widehat{f}(t) dt$ est la primitive de \widehat{f} sur l'intervalle $[0, +\infty[$ qui prend la valeur 0 en 0.

Donc $x \to \int_0^x \widehat{f}(t) dt$ est dérivable sur $[0, +\infty[$ et de dérivée \widehat{f} . De plus $x \to x^{-1/\lambda}$ est dérivable sur \mathbb{R}_+^* .

Alors par produit g est dérivable sur \mathbb{R}_+^* . De plus $\forall x \in \mathbb{R}_+^*$, $g'(x) = -\frac{1}{\lambda} x^{-1/\lambda - 1} \int_0^x \widehat{f}(t) dt + x^{-1/\lambda} \widehat{f}(x)$.

$$\forall x \in \mathbb{R}_+^*, \ g'(x) = -\frac{1}{\lambda} \, x^{-1/\lambda - 1} \, \int_0^x f(t) \, \mathrm{d}t + x^{-1/\lambda} \, f(x) = -\frac{1}{\lambda} \, x^{-\frac{1}{\lambda}} \, \left(\frac{1}{x} \, \int_0^x f(t) \, \mathrm{d}t - \lambda \, f(x) \right).$$

$$\forall x \in \mathbb{R}_+^*, \ g'(x) = -\frac{1}{\lambda} x^{-\frac{1}{\lambda}} \left(\varphi(f)(x) - \lambda f(x) \right).$$

Or f est un vecteur propre de φ associé à la valeur propre λ donc $\varphi(f) = \lambda f$. Donc $\forall x \in \mathbb{R}_+^*, \ \varphi(f)(x) - \lambda f(x) = 0$.

Alors $\forall x \in \mathbb{R}_+^*$, $g'(x) = -\frac{1}{\lambda} x^{-\frac{1}{\lambda}} \times 0 = 0$. Ainsi g est de dérivée nulle sur l'intervalle $]0, +\infty[$.

Donc g est constante sur $]0, +\infty[$. Alors il existe un réel γ tel que $\forall x \in \mathbb{R}_+^*, \ \gamma = g(x) = x^{-1/\lambda} \int_0^x f(t) dt$.

Alors $\forall x \in \mathbb{R}_+^*$, $\int_0^x f(t) dt = \gamma x^{1/\lambda}$.

Il existe un réel
$$\gamma$$
 tel que : $\forall x \in \mathbb{R}_+^*$, $\int_0^x f(t) dt = \gamma x^{1/\lambda}$.

 $\forall x \in \mathbb{R}_+^*, \ \lambda \, f(x) = \varphi(f)(x) = \frac{1}{x} \, \int_0^x f(t) \, \mathrm{d}t = \frac{1}{x} \, \gamma \, x^{1/\lambda} = \gamma \, x^{1/\lambda - 1}. \text{ Donc } \forall x \in \mathbb{R}_+^*, \ f(x) = \frac{\gamma}{\lambda} \, x^{1/\lambda - 1} \, \left(\lambda \text{ n'est pas null plane}\right).$

Il existe un réel
$$\gamma$$
 tel que $\forall x \in \mathbb{R}_+^*, \ f(x) = \frac{\gamma}{\lambda} x^{1/\lambda - 1}$.

7. Soit λ une valeur propre de φ . Soit f un vecteur propre de φ associé à λ .

D'après **Q6.**, il existe un réel γ tel que $\forall x \in \mathbb{R}_+^*$, $f(x) = \frac{\gamma}{\lambda} x^{1/\lambda - 1}$. Posons $\forall x \in \mathbb{R}_+^*$, $\ell_{\lambda}(x) = x^{1/\lambda - 1}$.

Alors il existe un réel γ tel que $f = \frac{\gamma}{\lambda} \ell_{\lambda}$. Donc $f \in \text{Vect}(\ell_{\lambda})$.

Ainsi SEP $(\varphi, \lambda) - \{0_E\}$ est contenu dans $\text{Vect}(\ell_{\lambda})$. Or 0_E appartient à $\text{Vect}(\ell_{\lambda})$ donc SEP $(\varphi, \lambda) \subset \text{Vect}(\ell_{\lambda})$.

En particulier dim SEP $(\varphi, \lambda) \leq \text{Vect}(\ell_{\lambda}) = 1$.

De plus dim SEP $(\varphi, \lambda) \geqslant 1$ car un sous-espace propre n'est pas de dimension nulle. Alors dim SEP $(\varphi, \lambda) = 1$.

La dimension des sous-espaces propres de φ est 1.

Nous avons vu que l'ensemble des valeurs propres de φ est $\left\{\frac{1}{k+1}\;;\;k\in \llbracket 1,n\rrbracket\right\}$. De plus $\frac{1}{2}>\frac{1}{3}>\cdots>\frac{1}{n+1}$.

Ainsi φ possède n valeurs propres distinctes et chaque sous-propres de φ est de dimension 1.

Alors la somme des dimensions des sous-espaces propres de φ est n. Or dim E=2n. Ainsi :

 φ n'est pas diagonalisable.

EXERCICE 2

- 1. Soit k un élément de \mathbb{N} et soit x un réel strictement positif. Posons $\forall t \in]0, +\infty[$, $f_{k,x}(t) = \left(\ln(t)\right)^k e^{-t} t^{x-1}$. $f_{k,x}$ est continue sur $]0, +\infty[$ comme produit de trois fonctions continues sur $]0, +\infty[$.
- $f_{k,x}$ est positive sur $[1, +\infty[$. $\forall t \in [1, +\infty[$, $t^2 f_{k,x}(t) = t^2 (\ln(t))^k e^{-t} t^{x-1} = (\ln(t))^k e^{-t} t^{x+1} = \frac{(\ln(t))^k}{t} \frac{t^{x+2}}{e^t}$.

Alors $\lim_{t\to+\infty} \left(t^2 f_{k,x}(t)\right) = 0 \times 0 = 0$ par croissance comparée. Ainsi $f_{k,x}$ est négligeable devant $t\to \frac{1}{t^2}$ au voisinage de

 $+\infty$. Or ces deux fonctions sont positives sur $[1,+\infty[$ (une positivité suffit...) et $\int_1^{+\infty} \frac{\mathrm{d}t}{t^2}$ converge.

Les règles de comparaison sur les impropres de fonctions positives montrent alors que $\int_1^{+\infty} f_{k,x}(t) dt$ converge.

• $\forall t \in]0,1], \ t^{1-\frac{x}{2}} |f_{k,x}(t)| = \left| t^{1-\frac{x}{2}} \left(\ln(t) \right)^k e^{-t} t^{x-1} \right| = \left| t^{\frac{x}{2}} \left(\ln(t) \right)^k \right| e^{-t}.$

Alors par croissance comparée : $\lim_{t\to 0^+} \left(t^{1-\frac{x}{2}} |f_{k,x}(t)|\right) = |0| \times 1 = 0$ car $\frac{x}{2}$ est strictement positif.

Ainsi $|f_{k,x}|$ est négligable devant $t \to \frac{1}{t^{1-\frac{x}{2}}}$ au voisinage de 0.

Or ces deux fonctions sont positives sur]0,1] (une positivité suffit...) et $\int_0^1 \frac{\mathrm{d}t}{t^{1-\frac{x}{2}}}$ converge car $1-\frac{x}{2} < 1$.

Les règles de comparaison sur les impropres de fonctions positives montrent alors que $\int_0^1 f_{k,x}(t) dt$ converge.

Finalement $\int_0^{+\infty} f_{k,x}(t) dt$ converge.

Pour tout élément k de \mathbb{N} et pour tout réel x strictement positif $\int_0^{+\infty} \left(\ln(t)\right)^k e^{-t} t^{x-1} dt$ converge.

Exercice x appartient $\grave{a}] - \infty, 0]$ et k appartient $\grave{a} \mathbb{N}$.

 $Montrer \ que \ \int_0^1 \left(\ \ln(t) \right)^k e^{-t} \ t^{x-1} \ \mathrm{d}t \ \ diverge \ \ et \ \ que \ \int_1^{+\infty} \left(\ \ln(t) \right)^k e^{-t} \ t^{x-1} \ \mathrm{d}t \ \ converge.$

2. Le cours indique que :

$$\forall x \in]0, +\infty[, \Gamma(x+1) = x\Gamma(x).$$

Rappelons que Γ est dérivable et non nulle sur $]0, +\infty[$. De plus $\forall x \in]0, +\infty[$, $\Psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$.

$$\forall x \in]0, +\infty[, \ \Gamma(x+1) = x \Gamma(x) \ \text{donc} \ \forall x \in]0, +\infty[, \ \Gamma'(x+1) = \Gamma(x) + x \Gamma'(x).$$

$$\forall x \in]0,+\infty[,\ \Psi(x+1)=\frac{\Gamma'(x+1)}{\Gamma(x+1)}=\frac{\Gamma(x)+x\,\Gamma'(x)}{x\,\Gamma(x)}=\frac{1}{x}+\frac{\Gamma'(x)}{\Gamma(x)}=\frac{1}{x}+\Psi(x). \text{ Ainsi : }$$

$$\forall x \in]0, +\infty[, \ \Psi(x+1) - \ \Psi(x) = \frac{1}{x}.$$

$$\forall n \in \mathbb{N}^*, \ \Psi(n+2) - \Psi(n) = \Psi(n+2) - \Psi(n+1) + \Psi(n+1) - \Psi(n) = \frac{1}{n+1} + \frac{1}{n} \cdot \Psi(n+1) - \Psi(n+1) - \Psi(n) = \frac{1}{n+1} + \frac{1}{n} \cdot \Psi(n+1) - \Psi($$

$$\forall n \in \mathbb{N}^*, \ \Psi(n+2) - \Psi(n) = \frac{1}{n+1} + \frac{1}{n}.$$

3. Soit A un réel strictement positif. Soit ε un réel appartenant à l'intervalle]0,A[.

Soit $\mathcal{C}([\varepsilon, A], \mathbb{R})$ l'espace vectoriel réel des applications continues de $[\varepsilon, A]$ dans \mathbb{R} .

Posons:
$$\forall (f,g) \in (\mathcal{C}([\varepsilon,A],\mathbb{R}))^2$$
, $\langle f,g \rangle = \int_{\varepsilon}^A f(t) g(t) dt$. $\langle .,. \rangle$ est un produit scalaire sur $\mathcal{C}([\varepsilon,A],\mathbb{R})$.

L'ingalité de Cauchy-Schwartz indique que $\forall (f,g) \in \left(\mathcal{C}([\varepsilon,A],\mathbb{R})\right)^2, \left(< f,g>\right)^2 \leqslant < f,f> < g,g>$.

$$\forall (f,g) \in \left(\mathcal{C}([\varepsilon,A],\mathbb{R})\right)^2, \left(\int_{\varepsilon}^A f(t)\,g(t)\,\mathrm{d}t\right)^2 \leqslant \int_{\varepsilon}^A \left(f(t)\right)^2\mathrm{d}t\,\int_{\varepsilon}^A \left(g(t)\right)^2\mathrm{d}t.$$

Soit x un réel strictement positif. $t \to \ln(t) \, e^{-\frac{t}{2}} \, t^{\frac{x-1}{2}}$ et $t \to e^{-\frac{t}{2}} \, t^{\frac{x-1}{2}}$ sont continues sur $[\varepsilon, A]$.

$$\operatorname{Ainsi}\left(\int_{\varepsilon}^{A}\left(\left(\ln(t)\,e^{-\frac{t}{2}}\,t^{\frac{x-1}{2}}\,\right)\,\left(e^{-\frac{t}{2}}\,t^{\frac{x-1}{2}}\right)\right)\mathrm{d}t\right)^{2}\leqslant \int_{\varepsilon}^{A}\left(\ln(t)\,e^{-\frac{t}{2}}\,t^{\frac{x-1}{2}}\right)^{2}\mathrm{d}t\,\int_{\varepsilon}^{A}\left(e^{-\frac{t}{2}}\,t^{\frac{x-1}{2}}\right)^{2}\mathrm{d}t.$$

$$\operatorname{Donc}\left(\int_{\varepsilon}^{A} \ln(t) \, e^{-t} \, t^{x-1} \, \mathrm{d}t\right)^{2} \leqslant \left(\int_{\varepsilon}^{A} \left(\ln(t)\right)^{2} e^{-t} \, t^{x-1} \, \mathrm{d}t\right) \left(\int_{\varepsilon}^{A} e^{-t} \, t^{x-1} \, \mathrm{d}t\right) \text{ et ceci pour tout } \varepsilon \text{ dans }]0, A[.$$

Rappelons que
$$\int_0^A \ln(t) e^{-t} t^{x-1} dt$$
, $\int_0^A (\ln(t))^2 e^{-t} t^{x-1} dt$ et $\int_0^A e^{-t} t^{x-1} dt$ convergent.

Donc en faisant tendre ε vers 0 dans l'inégalité précédente il vient :

$$\left(\int_0^A \ln(t) \, e^{-t} \, t^{x-1} \, \mathrm{d}t \right)^2 \leqslant \left(\int_0^A \left(\ln(t) \right)^2 e^{-t} \, t^{x-1} \, \mathrm{d}t \right) \left(\int_0^A e^{-t} \, t^{x-1} \, \mathrm{d}t \right).$$

$$\forall (x, A) \in \left(\mathbb{R}_+^* \right), \ \left(\int_0^A \ln(t) \, e^{-t} \, t^{x-1} \, \mathrm{d}t \right)^2 \leqslant \left(\int_0^A (\ln(t))^2 \, e^{-t} \, t^{x-1} \, \mathrm{d}t \right) \left(\int_0^A e^{-t} \, t^{x-1} \, \mathrm{d}t \right).$$

4. Soit x un réel strictement positif.

$$\forall A\in]0,+\infty[,\ \left(\int_0^A\ln(t)\,e^{-t}\,t^{x-1}\,\mathrm{d}t\right)^2\leqslant \left(\int_0^A\big(\ln(t)\big)^2\,e^{-t}\,t^{x-1}\,\mathrm{d}t\right)\,\left(\int_0^Ae^{-t}\,t^{x-1}\,\mathrm{d}t\right).$$

$$\text{Rappelons que } \int_0^{+\infty} \ln(t) \, e^{-t} \, t^{x-1} \, \mathrm{d}t, \, \int_0^{+\infty} \left(\ln(t) \right)^2 e^{-t} \, t^{x-1} \, \mathrm{d}t \, \operatorname{et} \, \int_0^{+\infty} e^{-t} \, t^{x-1} \, \mathrm{d}t \, \operatorname{convergent.}$$

Donc en faisant tendre A vers $+\infty$ dans l'inégalité précédente il vient :

$$\left(\int_0^{+\infty} \ln(t) \, e^{-t} \, t^{x-1} \, \mathrm{d}t \right)^2 \le \left(\int_0^{+\infty} \left(\ln(t) \right)^2 e^{-t} \, t^{x-1} \, \mathrm{d}t \right) \, \left(\int_0^{+\infty} e^{-t} \, t^{x-1} \, \mathrm{d}t \right)$$

Ainsi $(\Gamma'(x))^2 \le \Gamma''(x) \Gamma(x)$. Donc:

$$\forall x \in]0, +\infty[, (\Gamma'(x))^2 \leqslant \Gamma(x)\Gamma''(x).$$

 Γ et Γ' sont dérivables sur $]0 + \infty[$, Γ ne s'anulle pas sur $]0, +\infty[$ et $\forall x \in]0, +\infty[$, $\Psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$

Alors
$$\Psi$$
 est dérivable sur $]0, +\infty[$ et $\forall x \in]0, +\infty[$, $\Psi'(x) = \frac{\Gamma''(x)\Gamma(x) - \Gamma'(x)\Gamma'(x)}{\left(\Gamma(x)\right)^2} = \frac{\Gamma(x)\Gamma''(x) - \left(\Gamma'(x)\right)^2}{\left(\Gamma(x)\right)^2}$.

$$\forall x \in]0, +\infty[, \ \left(\Gamma(x)\right)^2 > 0 \text{ et } \Gamma(x)\Gamma''(x) - \left(\Gamma'(x)\right)^2 \geqslant 0 \text{ d'après ce qui précéde. Alors } \forall x \in]0, +\infty[, \ \Psi'(x) \geqslant 0. \text{ Ainsi : } \Gamma(x)\Gamma''(x) = 0.$$

$$\Psi$$
 est croissante sur $]0, +\infty[$.

5. (a) La méthode naturelle est d'utiliser la décomposition en éléments simples:

$$\forall k \in \mathbb{N}^*, \ \frac{1}{k^2 - a^2} = \frac{1}{2a} \frac{1}{k - a} - \frac{1}{2a} \frac{1}{k + a}.$$

Pour éviter aux gens qui ne connaissent pas d'avoir des remords je propose de montrer l'égalité de la droite vers la gauche.

Notons que 1+a>0, 1-a>0, $\forall k\in\mathbb{N}^*$, k+1+a>0 et $\forall k\in\mathbb{N}^*$, k+1-a>0 car a appartient à]0,1[.

Ainsi 1 + a et 1 - a sont dans le domaine de définition de Ψ et pour tout k dans \mathbb{N}^* , k + 1 + a et k + 1 - a sont dans le domaine de définition de Ψ .

Soit
$$n$$
 un élément de \mathbb{N}^* . Posons $A_n = \frac{1}{2a} \left(\Psi(1+a) - \Psi(1-a) \right) - \frac{1}{2a} \left(\Psi(n+1+a) - \Psi(n+1-a) \right)$.

$$A_n = -\frac{1}{2a} \left(\Psi(n+1+a) - \Psi(1+a) \right) + \frac{1}{2a} \left(\Psi(n+1-a) - \Psi(1-a) \right).$$

Notons encore que pour tout k dans \mathbb{N}^* , k+1+a, k+a, k+1-a et k-a sont strictement positifs et en particulier appartiennent au domaine de Ψ . Alors par "télescopage" il vient :

$$A_n = -\frac{1}{2a} \sum_{k=1}^n \left(\Psi(k+1+a) - \Psi(k+a) \right) + \frac{1}{2a} \sum_{k=1}^n \left(\Psi(k+1-a) - \Psi(k-a) \right) = -\frac{1}{2a} \sum_{k=1}^n \frac{1}{k+a} + \frac{1}{2a} \sum_{k=1}^n \frac{1}{k-a} + \frac{1}{2a} \sum_{k=1}^n \frac{1}{$$

$$A_n = \frac{1}{2a} \sum_{k=1}^n \left(\frac{1}{k-a} - \frac{1}{k+a} \right) = \frac{1}{2a} \sum_{k=1}^n \frac{k+a-(k-a)}{(k-a)(k+a)} = \frac{1}{2a} \sum_{k=1}^n \frac{2a}{k^2-a^2} = \sum_{k=1}^n \frac{1}{k^2-a^2}$$

Alors:
$$\sum_{k=1}^{n} \frac{1}{k^2 - a^2} = A_n = \frac{1}{2a} \left(\Psi(1+a) - \Psi(1-a) \right) - \frac{1}{2a} \left(\Psi(n+1+a) - \Psi(n+1-a) \right).$$

Pour tout élément
$$n$$
 de \mathbb{N}^* : $\sum_{k=1}^n \frac{1}{k^2 - a^2} = \frac{1}{2a} \left(\Psi(1+a) - \Psi(1-a) \right) - \frac{1}{2a} \left(\Psi(n+1+a) - \Psi(n+1-a) \right)$.

Soit n un élément de $\mathbb{N}*$.

 Ψ est croissante sur $]0, +\infty[$, $0 < n+1-a \le n+1+a$, $0 < n+1+a \le n+2$ et $0 < n \le n+1-a$.

Alors
$$\Psi(n+1-a) \leq \Psi(n+1+a), \ \Psi(n+1+a) \leq \Psi(n+2), \ \Psi(n) \leq \Psi(n+1-a).$$

Donc
$$0 \le \Psi(n+1+a) - \Psi(n+a+1), \ \Psi(n+1+a) \le \Psi(n+2), \ -\Psi(n+1-a) \le -\Psi(n).$$

Finalement $0 \le \Psi(n+1+a) - \Psi(n+1-a) \le \Psi(n+2) - \Psi(n)$.

Pour tout élément
$$n$$
 de \mathbb{N}^* : $0 \leqslant \Psi(n+1+a) - \Psi(n+1-a) \leqslant \Psi(n+2) - \Psi(n)$.

(b)
$$\forall n \in \mathbb{N}^*, \ 0 \leqslant \Psi(n+1+a) - \Psi(n+1-a) \leqslant \Psi(n+2) - \Psi(n) = \frac{1}{n+1} + \frac{1}{n} \text{ et } \lim_{n \to +\infty} \left(\frac{1}{n+1} + \frac{1}{n} \right) = 0.$$

Alors par encadrement il vient $\lim_{n\to+\infty} (\Psi(n+1+a) - \Psi(n+1-a)) = 0$.

Comme
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n \frac{1}{k^2 - a^2} = \frac{1}{2a} \left(\Psi(1+a) - \Psi(1-a) \right) - \frac{1}{2a} \left(\Psi(n+1+a) - \Psi(n+1-a) \right)$$
:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k^2 - a^2} \right) = \frac{1}{2a} \left(\Psi(1+a) - \Psi(1-a) \right) = \frac{\Psi(1+a) - \Psi(1-a)}{2a} \cdot \text{Alors} :$$

la série
$$\sum_{n\geqslant 1}\frac{1}{n^2-a^2}$$
 est convergente et $\sum_{n=1}^{+\infty}\frac{1}{n^2-a^2}=\frac{\Psi(1+a)-\Psi(1-a)}{2\,a}$.

PROBLÈME

Dans tout ce problème, p est un réel appartenant à]0,1[, q=1-p, et N est un entier naturel supérieur ou égal à 3.

PARTIE I: Étude d'un cas particulier.

1. Notons que la commande random crée aléatoirement un réel appartenant à l'intervalle [0,1[(et pas [0,1]). Nous le signalons tous les ans...

Avant de commencer la simulation (assez faible) demandée, écrivons une fonction simple simulant le jeu dans le cas général.

k sera la variable qui compte les parties. s sera la variable qui donne le nombre de parties gagnées par le joueur qui reste en jeu après la $k^{\text{ème}}$ partie. Notons que :

- ullet Après la première partie s prend la valeur 1.
- Si $k \ge 2$ et si le joueur A_k gagne la $k^{\text{ème}}$ partie (qui est la première partie qu'il dispute) s prend la valeur 1. Si ce n'est pas le cas l'autre joueur gagne une nouvelle partie et s prend la valeur de s+1.
 - Si $k \ge 1$, le joueur A_k gagne la $k^{\text{ème}}$ partie avec la probabilité p.
 - ullet Le jeu s'arrête dès que s prend la valeur de N.

Voilà tout est dit!

- ► Exercice Écrire la fonction CAS_GENERAL en utilisant While. ◀
 - (a) RAS, sauf que l'on aurait pu préciser à quoi correspondait cette fonction!

(b) RAS!

```
1 function TEST_VICTOIRE(a,b,c:integer):boolean;
2
3 begin
4 TEST_VICTOIRE:=((a=b) and (b=c));
5 end;
```

- lacktriangle La ligne 4 surprendra quelques personnes... qui ont oublié que ((a=b) and (b=c))) est un boolean. \blacktriangleleft
 - (c) Je préfère écrire une fonction plutôt qu'un programme qui oblige à réécrire les deux fonctions précédentes.

Je donne une version while et une version repeat.

```
1 function TOURNOI:integer;
2
3 var k,a,b,c:integer;
4
5 begin
6 k:=3;a:=DUEL;b:=DUEL;c:=DUEL;
7 while TEST_VICTOIRE(a,b,c)=false do
8    begin
9    k:=k+1;a:=b;b:=c;c:=DUEL;
10    end;
11 TOURNOI:=k;
12 end;
```

```
1 function TOURNOI:integer;
2
3 var k,a,b,c:integer;
4
5 begin
6 k:=2;a:=DUEL;b:=DUEL;
7 Repeat
8 k:=k+1;a:=b;b:=c;c:=DUEL;
9 until TEST_VICTOIRE(a,b,c);
10 TOURNOI:=k;
11 end;
```

- ▶ La ligne 9 surprendra quelques personnes... qui ont oublié que TEST_VICTOIRE(a,b,c) est un boolean. ◀
 - Q2. Le tableau suivant récapitule les 8 résultats possibles des trois premiers duels.

duel 1	A0	A0	A0	A0	A1	A1	A1	A1
duel 2	A0	A0	A2	A2	A1	A1	A2	A2
duel 3	A0	A3	A2	A3	A1	A3	A2	A3

S'il y a un gagnant il a obtenu 3 victoires consécutives. Il ne peut donc pas y avoir de gagnant à l'issue du premier duel ou à l'issue du second duel. Donc E_1 et E_2 sont des événements certains. Alors $P(E_1) = P(E_2) = 1$.

Il y a un vainqueur à la fin du troisième duel si et seulement si l'un des joueurs A_0 et A_1 est gagnant.

Le joueur A_0 (resp. A_1) gagne à la fin du troisième duel avec la probabilité $\left(\frac{1}{2}\right)^3$.

La probabilité pour qu'il y ait un gagnant à l'issue du troisième duel est donc $\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3$ c'est à dire $\left(\frac{1}{2}\right)^2$.

La probabilité pour qu'il n'ait pas de gagnant à l'issue du troisième duel est donc $1 - \left(\frac{1}{2}\right)^2$ c'est à dire $\frac{3}{4}$.

Donc $P(E_3) = \frac{3}{4}$.

$$P(E_1) = 1, P(E_2) = 1 \text{ et } P(E_3) = \frac{3}{4}.$$

$$\frac{1}{2}P(E_2) + \frac{1}{4}P(E_1) = \frac{1}{2} \times 1 + \frac{1}{4} \times 1 = \frac{3}{4} = P(E_3).$$

$$P(E_3) = \frac{1}{2} P(E_2) + \frac{1}{4} P(E_1).$$

Q3. Soit n un élément de $[3, +\infty[$. Notons que s'il n'y a pas de vainqueur après le duel numéro n, le vainqueur de ce duel à obtenu une victoire ou deux victoires et pas plus.

Notons E'_n (resp. E''_n) l'événement il n'y a pas encore eu de gagnant du tournoi à l'issue du duel numéro n et le vainqueur du $n^{\text{ème}}$ duel à obtenu une victoire (resp. deux victoires) et pas plus.

Notons que le premier cas le vainqueur du $n^{\text{ème}}$ duel est A_n et dans le second c'est A_{n-1} .

 E_n est réunion disjointe de E_n' et E_n'' donc $P(E_n) = P(E_n') + P(E_n'')$.

 E'_n se réalise si et seulement il n'y a pas encore eu de gagnant du tournoi à l'issue du duel numéro n-1 et A_n gagne son premier duel. Ainsi $P(E'_n) = P(E_{n-1}) \times \frac{1}{2}$.

 E_n'' se réalise si et seulement il n'y a pas encore eu de gagnant du tournoi à l'issue du duel numéro n-2 et A_{n-1} gagne les duels numéros n-1 et n.

Ainsi
$$P(E_n'') = P(E_{n-2}) \times \frac{1}{2} \times \frac{1}{2} \cdot P(E_n'') = \frac{1}{4} P(E_{n-2}).$$

Par conséquent $P(E_n) = P(E_n') + P(E_n'') = \frac{1}{2}P(E_{n-1}) + \frac{1}{4}P(E_{n-2}).$

$$\forall n \in [3, +\infty[, P(E_n) = \frac{1}{2}P(E_{n-1}) + \frac{1}{4}P(E_{n-2})]$$
 (R₁).

▶ Remarque En gardant N = 3 et en prenant p quelconque on a :

$$P(E_1) = P(E_2) = 1 \text{ et } \forall n \in [3, +\infty[, P(E_n) = p P(E_{n-1}) + p q P(E_{n-2}).]$$

Q4. $(P(E_n))_{n_i n [1,+\infty[}$ est une suite réelle vérifiant une relation linéaire de récurrence d'ordre 2.

Son équation caractéristique est $z\in\mathbb{C}$ et $z^2-\frac{1}{2}\,z-\frac{1}{4}=0$ (oui $z\in\mathbb{C}\,!\,!).$

$$\forall z \in \mathbb{C}, \ z^2 - \frac{1}{2}z - \frac{1}{4} = \left(z - \frac{1}{4}\right)^2 - \left(\frac{1}{16} + \frac{1}{4}\right) = \left(z - \frac{1}{4}\right)^2 - \frac{5}{16} = \left(z - \frac{1}{4} + \frac{\sqrt{5}}{4}\right) \left(z - \frac{1}{4} - \frac{\sqrt{5}}{4}\right).$$

L'équation caractéristique précédente à deux racines distinctes appartenant à \mathbb{R} : $r_1 = \frac{1-\sqrt{5}}{4}$ et $r_2 = \frac{1+\sqrt{5}}{4}$.

Alors il existe deux réels λ et μ tel que $\forall n \in [1, +\infty[$, $P(E_n) = \lambda r_1^n + \mu r_2^n$.

On a encore $\forall n \in [2, +\infty[$, $P(E_n) = \lambda r_1^n + \mu r_2^n!!$

Il existe quatre réels λ , μ , r_1 , r_2 tels que $\forall n \in [2, +\infty[$, $P(E_n) = \lambda r_1^n + \mu r_2^n$.

► Remarque Reprenons $\forall n \in [1, +\infty[$, $P(E_n) = \lambda r_1^n + \mu r_2^n \text{ avec } r_1 = \frac{1 - \sqrt{5}}{4} \text{ et } r_2 = \frac{1 + \sqrt{5}}{4}$

En résolvant le système $\begin{cases} \lambda \, r_1 + \mu \, r_2 = P(E_1) = 1 \\ \lambda \, (r_1)^2 + \mu \, (r_2)^2 = P(E_2) = 1 \end{cases} \text{ il vient } \lambda = 1 - \frac{\sqrt{5}}{5} \text{ et } \mu = 1 + \frac{\sqrt{5}}{5} \cdot \frac{1}{5}$

$$Ainsi \ \forall n \in \llbracket 1, +\infty \llbracket, P(E_n) = \left(1 - \frac{\sqrt{5}}{5}\right) \left(\frac{1 - \sqrt{5}}{4}\right)^n + \left(1 + \frac{\sqrt{5}}{5}\right) \left(\frac{1 + \sqrt{5}}{4}\right)^n.$$

 $Notons~que~l'on~a~encore: \forall n \in [\![1,+\infty[\![,P(E_n)=\frac{4\sqrt{5}}{5}\left(\left(\frac{1+\sqrt{5}}{4}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{4}\right)^{n+1}\right).$

On peut simplifier les calculs en posant $\forall n \in \mathbb{N}, t_n = P(E_{n+1})$. Le système initial est plus simple...

► Exercice Dans le cas N=3 et p quelconque, montrer que $r_1=\frac{p-\sqrt{p^2+4\,pq}}{2}$, $r_2=\frac{p+\sqrt{p^2+4\,pq}}{2}$ et

$$\forall n \in [1, +\infty[, P(E_n)] = \frac{1}{2} \left(\frac{1}{p} - \frac{1}{\sqrt{p^2 + 4pq}} \right) r_1^n + \frac{1}{2} \left(\frac{1}{p} + \frac{1}{\sqrt{p^2 + 4pq}} \right) r_2^n.$$

Ou encore: $\forall n \in [1, +\infty[, P(E_n)] = \frac{1}{p\sqrt{p^2 + 4pq}} (r_2^{n+1} - r_1^{n+1}).$

Disons un mot sur le calcul. En résolvant le système $\begin{cases} \lambda \, r_1 + \mu \, r_2 = P(E_1) = 1 \\ \lambda \, (r_1)^2 + \mu \, (r_2) = P(E_2) = 1 \end{cases} \quad \text{il vient :}$

$$\lambda = \frac{1 - r_2}{r_1 (r_1 - r_2)} et \mu = \frac{1 - r_1}{r_2 (r_2 - r_1)}$$

Une piste pour le calcul de λ . $\lambda = \frac{1 - r_2}{r_1 (r_1 - r_2)} = \frac{r_2 - r_2^2}{r_1 r_2 (r_1 - r_2)}$

 $Or \ r_2^2 = p \ r_2 + pq, \ r_1 + r_2 = p \ et \ r_1 \ r_2 = -pq. \ Alors \ r_2 - r_2^2 = r_2 - p \ r_2 - pq = q \ r_2 - pq = q \ (r_2 - p) = q \ (-r_1).$

$$\lambda = \frac{-q\,r_1}{\left(-pq\right)\left(r_1-r_2\right)} = \frac{r_1}{p\left(r_1-r_2\right)} = -\frac{r_1}{p\,\sqrt{p^2+4\,pq}}. \ \ De \ \ m\hat{e}me \ \mu = \frac{r_2}{p\,\sqrt{p^2+4\,pq}}. \ \ La \ suite \ est \ claire. \ \blacktriangleleft$$

Montrons maintenant que $\lim_{n\to+\infty} P(E_n) = 0$. $r_1 = \frac{1-\sqrt{5}}{4}$ et $r_2 = \frac{1+\sqrt{5}}{4}$.

$$\sqrt{5} < \sqrt{9} = 3. \text{ Alors } 0 > r_1 = \frac{1 - \sqrt{5}}{4} > \frac{1 - 3}{4} = -\frac{1}{2} > -1 \text{ et } 0 < r_2 = \frac{1 + \sqrt{5}}{4} < \frac{1 + 3}{4} = 1.$$

Donc r_1 et r_2 sont deux éléments de] -1,1[. Alors $\lim_{n\to+\infty}r_1^n=\lim_{n\to infi}r_2^n=0$.

Ainsi $\lim_{n \to +\infty} (\lambda r_1^n + \mu r_2^n) = 0$ donc $\lim_{n \to +\infty} P(E_n) = 0$.

$$\lim_{n \to +\infty} P(E_n) = 0.$$

Q5. La suite $(P(E_n))_{n\geqslant 2}$ est décroissante pour l'inclusion car pour tout n dans $[2, +\infty[$ l'événement E_{n+1} est contenu dans l'événement E_n .

Donc le théorème de la limite monotone montre que $P\left(\bigcap_{n=2}^{+\infty} E_n\right) = \lim_{n \to +\infty} P(E_n) = 0.$

La probabilité de
$$P\left(\bigcap_{n=2}^{+\infty}E_n\right)$$
 est nulle. L'événement $\bigcap_{n=2}^{+\infty}E_n$ est quasi imposible.

Notons que l'événement "le tournoi désignera un vainqueur" est le complémentaire de l'événement $\bigcap_{n=2}^{+\infty} E_n$. Alors:

la probabilité de l'événement "le tournoi désignera un vainqueur" est égale à 1. Cet événement est quasi certain.

▶ Les trois derniers résultats encadrés valent encore pour n = 3 et p quelconque (en attendant mieux...) $car - 1 < r_1 < 0$ et $0 < r_2 < 1$. ◀

PARTIE II : Étude du cas général.

1. Ici il y a visiblement un problème. Si $A_k(n)$ se réalise, nécessairement le gagnant du tournoi n'a pas encore été désigné à l'issue du duel numéro n. Ainsi $A_k(n) \subset E_n$. Alors $E_n \cap A_k^{(n)} = A_k^{(n)}$.

Alors
$$P_{A_k^{(n)}}(E_n) = \frac{P\left(E_n \cap A_k^{(n)}\right)}{P\left(A_k^{(n)}\right)} = \frac{P\left(A_k^{(n)}\right)}{P\left(A_k^{(n)}\right)} = 1!!$$
 Donc on décroche et on passe à la question suivante!!

2. Soit n un élément de $[N, +\infty[$. Reprécisons légèrement les $A_k^{(n)}$. Pour tout k appartenant à [1, N-1] notons $A_k^{(n)}$ l'événement "le tournoi n'est pas terminé après le nème duel et le vainqueur du nème duel a obtenu exactement k victoires".

 E_n est réunion disjointe des événements $A_1^{(n)}, A_2^{(n)}, ..., A_{N-1}^{(n)}$. Donc $P(E_n) = \sum_{k=1}^{N-1} P(A_k^{(n)})$.

Soit k un élément de [1, N-1]. $A_k^{(n)}$ se réalise si et seulement :

- 1. Le tournoi n'est pas terminé après le $(n-k)^{\text{ème}}$ duel.
- 2. Le joueur A_{n-k+1} gagne les duels n-k+1, n-k+2, ..., n. Notons $B_k^{(n)}$ ce dernier événement.

Ainsi
$$A_k^{(n)} = E_{n-k} \cap B_k^{(n)}$$
. Donc $P(A_k^{(n)}) = P(E_{n-k} \cap B_k^{(n)}) = P(E_{n-k}) P_{E_{n-k}}(B_k^{(n)})$.

Observons que A_{n-k+1} gagne le duel n-k+1 avec la probabilité p.

Si k est supérieur ou égal à 2, pour tout i dans [2, k] le joueur A_{n-k+1} gagne le duel n-k+i avec la probabilié q.

Alors
$$P(A_k^{(n)}) = P(E_{n-k}) P_{E_{n-k}}(B_k^{(n)}) = P(E_{n-k}) p q^{k-1} = p q^{k-1} P(E_{n-k}).$$

Finalement
$$P(E_n) = \sum_{k=1}^{N-1} P(A_k^{(n)}) = \sum_{k=1}^{N-1} p q^{k-1} P(E_{n-k}).$$

$$\forall n \in [N, +\infty[, P(E_n) = \sum_{k=1}^{N-1} p q^{k-1} P(E_{n-k}) \qquad (\mathcal{R}_2).$$

3. Pour qu'il y ait un gagnant à ce tournoi il est nécessaire qu'un joueur gagne N duels consécutifs.

Il ne peut donc y avoir de vainqueur à la fin du $k^{\text{ème}}$ duel si k est un élément de [1, N-1].

Ainsi $E_1, E_2, ..., E_{N-1}$ sont des événements certains. Alors :

$$P(E_1) = P(E_2) = \dots = P(E_{N-1}) = 1.$$

$$N \geqslant N$$
 (!!) donc la relation (\mathcal{R}_2) permet d'écrire : $P(E_N) = \sum_{k=1}^{N-1} p \, q^{k-1} \, P(E_{N-k})$.

Notons que $\forall k \in \llbracket 1, N-1 \rrbracket, \ N-k \in \llbracket 1, N-1 \rrbracket.$ Donc $\forall k \in \llbracket 1, N-1 \rrbracket, \ P(E_{N-k})=1.$

Alors
$$P(E_N) = \sum_{k=1}^{N-1} p q^{k-1} = p \sum_{k=1}^{N-1} q^{k-1} = p \frac{1 - q^{N-1}}{1 - q} = 1 - q^{N-1}.$$

$$P(E_N) = 1 - q^{N-1}.$$

4. Soit
$$n$$
 un élément de $[N, +\infty[$. $P(E_{n+1}) = \sum_{k=1}^{N-1} p \, q^{k-1} \, P(E_{n+1-k})$.

Un petit changement d'indice donne : $P(E_{n+1}) = \sum_{k=0}^{N-2} p q^k P(E_{n-k})$. Alors :

$$P(E_{n+1}) = p P(E_n) + \sum_{k=1}^{N-1} p q^k P(E_{n-k}) - p q^{N-1} P(E_{n-(N-1)}).$$

Ainsi
$$P(E_{n+1}) = p P(E_n) + q \sum_{k=1}^{N-1} p q^{k-1} P(E_{n-k}) - p q^{N-1} P(E_{n-N+1}) = p P(E_n) + q P(E_n) - p q^{N-1} P(E_{n-N+1}).$$

Donc $P(E_{n+1}) = P(E_n) - p q^{N-1} P(E_{n-N+1})$. Finalement $P(E_n) - P(E_{n+1}) = p q^{N-1} P(E_{n-N+1})$.

$$\forall n \in [N, +\infty[, P(E_n) - P(E_{n+1}) = p q^{N-1} P(E_{n-N+1})$$
 (R₃).

5.
$$Q$$
 est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $Q'(x) = \sum_{k=1}^{N-1} p q^{k-1} k X^{k-1} - 0 = \sum_{k=1}^{N-1} p q^{k-1} k X^{k-1}$.

En particulier Q est continue sur l'intervalle $[0, +\infty[$ et Q' est strictement positive sur $[0, +\infty[$.

Donc Q est continue et strictement croissante sur $[0, +\infty[$.

Alors Q définie une bijection strictement croissante de $[0, +\infty[$ sur $[Q(0), \lim_{x \to +\infty} Q(x)[$.

Notons que Q(0)=-1 et que $\lim_{x\to +\infty}Q(x)=+\infty$. Alors 0 appartient à $[Q(0),\lim_{x\to +\infty}Q(x)]$.

Par conséquent il existe un unique élément r_N dans $[0, +\infty[$ tel que $Q(r_N) = 0$.

L'équation Q(x) = 0 possède une unique solution dans l'intervalle $[0, +\infty[$.

$$Q(1) = \left(\sum_{k=1}^{N-1} p \, q^{k-1}\right) - 1 = p \, \frac{1 - q^{N-1}}{1 - q} - 1 = 1 - q^{N-1} - 1 = -q^{N-1} < 0 = Q(r_N).$$

La stricte croissance de Q sur $[0, +\infty[$ donne $1 < r_N$.

Nous avons vu plus haut que Q' est strictement positive sur $[0, +\infty[$. Donc $Q'(r_N) > 0$.

$$r_N > 1 \text{ et } Q'(r_N) > 0.$$

6. Montrons ce résultat à l'aide d'une récurrence d'ordre N-1.

•
$$r_N > 1 \text{ donc } \forall k \in [1, N-1], \ (r_N)^{N-k} > 1. \text{ Ainsi } : \forall k \in [1, N-1], \ \left(\frac{1}{r_N}\right)^{k-N} > 1 = P(E_k).$$

Ainsi la propriété est vraie pour 1, 2, ..., N-1.

• Soit n un élément de $[\![N,+\infty[\![$. Supposons la propriété vraie pour $n-N+1,\,n-N+2,\,...,\,n-1$ et montrons la pour n .

L'hypothèse de récurrence donne $\forall k \in [1, N-1], \ 0 \leqslant P(E_{n-k}) \leqslant \left(\frac{1}{r_N}\right)^{n-k-N}$.

Alors
$$0 \leqslant P(E_n) = \sum_{k=1}^{N-1} p \, q^{k-1} \, P(E_{n-k}) \leqslant \sum_{k=1}^{N-1} p \, q^{k-1} \left(\frac{1}{r_N}\right)^{n-k-N} = \left(\frac{1}{r_N}\right)^{n-N} \sum_{k=1}^{N-1} p \, q^{k-1} \, r_N^k.$$

Rappelons que $Q(r_N) = 0$ donc $0 = Q(r_N) = \sum_{k=1}^{N-1} p q^{k-1} r_N^k - 1$ donc $\sum_{k=1}^{N-1} p q^{k-1} r_N^k = 1$.

Alors $0 \leqslant P(E_n) \leqslant \left(\frac{1}{r_N}\right)^{n-N} \times 1 = \left(\frac{1}{r_N}\right)^{n-N}$. Ceci achève la récurrence.

$$\forall n \in [1, +\infty[, P(E_n)] \leqslant \left(\frac{1}{r_N}\right)^{n-N}.$$

7.
$$\forall n \in [1, +\infty[, 0 \leqslant P(E_n) \leqslant \left(\frac{1}{r_N}\right)^{n-N} = r_N^N \left(\frac{1}{r_N}\right)^n$$
.

 $r_N > 1$ donc $\left| \frac{1}{r_N} \right| < 1$. Alors la série de terme général $\left(\frac{1}{r_N} \right)^n$ est convergente.

Il en est de même de la série de terme général $r_N^N \left(\frac{1}{r_N}\right)^n$.

Les règles de comparaison sur les séries à termes positifs montrent alors que la série de terme général $P(E_n)$ converge.

La série
$$\sum_{n\geqslant 1} P(E_n)$$
 converge.

 $\forall n \in [N, +\infty[, P(E_n) - P(E_{n+1}) = p \, q^{N-1} \, P(E_{n-N+1}) \, \text{donc} \, \forall n \in [1, +\infty[, P(E_{n+N-1}) - P(E_{n+N}) = p \, q^{N-1} \, P(E_n)].$

$$\forall s \in [1, +\infty[, pq^{N-1} \sum_{n=1}^{s} P(E_n) = \sum_{n=1}^{s} (P(E_{n+N-1}) - P(E_{n+N})) = P(E_N) - P(E_{s+N}).$$

 $\forall s \in [1, +\infty[, \sum_{n=1}^{s} P(E_n) = \frac{1}{p q^{N-1}} \left(P(E_N) - P(E_{s+N}) \right). \text{ Or la s\'erie } \sum_{n \geq 1} P(E_n) \text{ converge donc } \lim_{n \to +\infty} P(E_n) = 0.$

Alors

$$\lim_{s \to +\infty} \sum_{n=1}^{s} P(E_n) = \lim_{s \to +\infty} \left(\frac{1}{p \, q^{N-1}} \left(P(E_N) - P(E_{s+N}) \right) \right) = \frac{P(E_N)}{p \, q^{N-1}} = \frac{1 - q^{N-1}}{p \, q^{N-1}} \cdot \text{Donc } \sum_{n=1}^{+\infty} P(E_n) = \frac{1 - q^{N-1}}{p \, q^{N-1}} \cdot \frac{1$$

8. (a) Notons que si $n \in [2, N-1]$, $E_{n-1} \cap \overline{E_n} = \emptyset$ et $\{X = n\} = \emptyset$.

Donc si $n \in [2, N-1]$, $P(E_{n-1} \cap \overline{E_n}) = 0 = P(X=n)$. Soit n un élément de $[N, +\infty]$.

 $\{X=n\}$ se réalise si et seulement si le gagnant n'a pas été obtenu à l'issue des duels 1, 2, ..., n-1 et si il est obtenu au duel numéro n. Donc $\{X=n\}=E_1\cap E_2\cap \cdots \cap E_{n-1}\cap \overline{E_n}$. Or $E_{n-1}\subset E_{n-2}\subset \cdots \subset E_1$ donc $E_1\cap E_2\cap \cdots \cap E_{n-1}=E_{n-1}$.

Ainsi
$$\{X = n\} = E_{n-1} \cap \overline{E_n}$$
.

Pour tout élément n de $[2, +\infty[$, les événements $E_{n-1} \cap \overline{E_n}$ et $\{X = n\}$ sont égaux.

(b) Soit n un élément de $[2, +\infty[$. $E_{n-1} = (E_{n-1} \cap E_n) \cup (E_{n-1} \cap \overline{E_n}) = E_n \cup (E_{n-1} \cap \overline{E_n})$ (car $E_n \subset E_{n-1}$).

Par incompatibilité il vient : $P(E_{n-1}) = P(E_n) + P(E_{n-1} \cap \overline{E_n}) = P(E_n) + P(X = n)$.

Donc $P(X = n) = P(E_{n-1}) - P(E_n)$ et ceci pour tout n dans $[2, +\infty[$.

Rappelons que $X(\Omega) = \{0\} \cup [N, +\infty[$. Soit s un élément de $[N, +\infty[$. Posons $T_s = 0 \times P(X = 0) + \sum_{n=N}^{s} n P(X = n)$.

$$T_s = \sum_{n=N}^s n P(X=n) = \sum_{n=2}^s n P(X=n) \text{ car } P(X=2) = P(X=3) = \dots = P(X=n-1) = 0.$$

$$T_s = \sum_{n=2}^{s} n P(X = n) = \sum_{n=2}^{s} n \left(P(E_{n-1}) - P(E_n) \right) = \sum_{n=2}^{s} n P(E_{n-1}) - \sum_{n=2}^{s} n P(E_n).$$

$$T_s = \sum_{n=1}^{s-1} (n+1) P(E_n) - \sum_{n=2}^{s} n P(E_n) = \sum_{n=1}^{s-1} (n+1) P(E_n) - \left(\sum_{n=1}^{s-1} n P(E_n) - P(E_1) + s P(E_s)\right).$$

$$T_s = \sum_{n=1}^{s-1} P(E_n) + 1 - s P(E_s) \text{ (car } P(E_1) = 1).$$

Rappelons que la série $\sum_{n\geqslant 1}P(E_n)$ converge et que $\sum_{n=1}^{+\infty}P(E_n)=\frac{1-q^{N-1}}{p\,q^{N-1}}$.

De plus
$$\forall s \in [1, +\infty[, 0 \leq s P(E_s) \leq s \left(\frac{1}{r_N}\right)^{s-N} = r_N^N \left(s \left(\frac{1}{r_N}\right)^s\right).$$

$$\operatorname{Or} \left| \frac{1}{r_N} \right| < 1 \operatorname{donc} \lim_{s \to +\infty} \left(r_N^N \left(s \left(\frac{1}{r_N} \right)^s \right) \right) = r_N^N \times 0 = 0. \text{ Alors par encadrement on obtient } \lim_{s \to +\infty} \left(s \, P(E_s) \right) = 0.$$

Ainsi
$$\lim_{s \to +\infty} T_s = \lim_{s \to +\infty} \left(\sum_{n=1}^{s-1} P(E_n) + 1 - s P(E_s) \right) = \sum_{n=1}^{+\infty} P(E_n) + 1 - 0 = \sum_{n=1}^{+\infty} P(E_n) + 1.$$

Alors
$$\lim_{s \to +\infty} \left(0 \times P(X=0) + \sum_{n=N}^{s} n P(X=n) \right) = \sum_{n=1}^{+\infty} P(E_n) + 1.$$

Ainsi la série de terme général n P(X = n) converge et est à termes positifs. Elle est donc absolument convergente. Donc :

X admet une espérance.

$$\lim_{s \to +\infty} \left(0 \times P(X = 0) + \sum_{n=N}^{s} n P(X = n) \right) = \sum_{n=1}^{+\infty} P(E_n) + 1 \text{ donc}:$$

$$E(X) = \sum_{k=1}^{+\infty} P(E_n) + 1.$$

$$E(X) = \sum_{k=1}^{+\infty} P(E_n) + 1 = \frac{1 - q^{N-1}}{p \, q^{N-1}} + 1 = \frac{1 - q^{N-1} + p \, q^{N-1}}{p \, q^{N-1}} = \frac{1 - (1 - p) \, q^{n-1}}{p \, q^{N-1}} = \frac{1 - q^N}{p \, q^{n-1}}.$$

$$E(X) = \frac{1 - q^N}{p \, q^{n-1}}.$$

PARTIE III : Calcul de $P(E_n)$.

Q1. Montrons d'abord les résultats admis.

$$\left(q\,X-1\right)Q(X) = \left(q\,X-1\right)\left(\sum_{k=1}^{N-1}\,\left(p\,q^{k-1}\,X^k\right)-1\right) = \sum_{k=1}^{N-1}\,\left(p\,q^k\,X^{k+1}\right) - \sum_{k=1}^{N-1}\,\left(p\,q^{k-1}\,X^k\right) - q\,X + 1.$$

$$(qX-1)Q(X) = \sum_{k=2}^{N} (pq^{k-1}X^k) - \sum_{k=1}^{N-1} (pq^{k-1}X^k) - qX + 1 = pq^{N-1}X^N - pX - qX + 1 = 1 - X + pq^{N-1}X^N.$$

$$(qX - 1) Q(X) = R(X).$$

$$X R'(X) - N R(X) = X (0 - 1 + p q^{N-1} N X^{N-1}) - N (1 - X + p q^{N-1} X^n).$$

$$X R'(X) - N R(X) = -X + N p q^{N-1} X^{N} - N + N X - N p q^{N-1} X^{n} = (N-1) X - N.$$

$$(qX - 1) Q(X) = R(X) \text{ et } X R'(X) - N R(X) = (N - 1) X - N.$$

Soit z un complexe racine de Q et de Q'. Alors R(z) = (qz-1)Q(z) = 0 car Q(z) = 0.

$$R'(X) = q Q(X) + (q X - 1) Q'(X) \text{ donc } R'(z) = q Q(z) + (q z - 1) Q'(z) = 0 \text{ car } Q(z) = Q'(z) = 0.$$

Si z est un complexe racine de Q et de Q', z est racine de R et de R'.

Soit z un complexe racine de Q et de Q'. Alors z est racine de R et de R'.

Rappelons que X R'(X) - N R(X) = (N-1) X - N.

Alors 0 = z R'(z) - N R(z) = (N-1) z - N. Donc $z = \frac{N}{N-1}$. Ainsi z est un réel qui appartient à l'intervalle $[0, +\infty[$.

Si z est un complexe racine de Q et de Q', z est un réel qui appartient à l'intervalle $[0, +\infty[$.

Soit z un complexe racine de Q et de Q'. Alors d'après ce qui précéde z est un réel qui appartient à l'intervalle $[0, +\infty[$.

Or
$$\forall x \in [0, +\infty[, Q'(x) = \sum_{k=1}^{N-1} p q^{k-1} k x^{k-1} > 0$$
. Ceci contredit $z \in [0, +\infty[$ et $Q'(z) = 0$.

Chaque racine complexe de Q est de multiplicité 1.

Q appartient à $\mathbb{R}[X]$ donc Q appartient à $\mathbb{C}[X]$. De plus Q est de degré N-1 et $N-1\geqslant 2$.

Alors dans $\mathbb{C}[X]$, Q est scindé et à racines simples d'après ce qui précède.

Notons que Q(0) = -1. Ainsi les racines de Q dans \mathbb{C} ne sont pas nulles.

Ainsi il existe un complexe γ (et même un réel) non nul et N-1 complexes $z_1, z_2, ..., z_{N-1}$ non nuls et deux à deux distincts tels que $Q = \gamma (X-z_1) (X-z_2) \cdots (X-z_{N-1})$.

- **Q2.** (a) Comme $z_1, z_2, ..., z_{N-1}$ sont des complexes non nuls, f est bien une application de $\mathbb{C}_{N-2}[X]$ dans \mathbb{C}^{N-1} .
 - Soit λ un élément de \mathbb{C} . Soient S et T deux éléments de $\mathbb{C}_{N-2}[X]$.

$$f(\lambda S + T) = \left(\left(\lambda S + T \right) \left(\frac{1}{z_1} \right), \left(\lambda S + T \right) \left(\frac{1}{z_2} \right), \dots, \left(\lambda S + T \right) \left(\frac{1}{z_{N-1}} \right) \right).$$

$$\begin{split} f(\lambda\,S+T) &= \left(\lambda\,S\left(\frac{1}{z_1}\right) + T\left(\frac{1}{z_1}\right), \lambda\,S\left(\frac{1}{z_2}\right) + T\left(\frac{1}{z_2}\right), \dots, \lambda\,S\left(\frac{1}{z_{N-1}}\right) + T\left(\frac{1}{z_{N-1}}\right)\right). \\ f(\lambda\,S+T) &= \lambda\left(S\left(\frac{1}{z_1}\right), S\left(\frac{1}{z_2}\right), \dots, S\left(\frac{1}{z_{N-1}}\right)\right) + \left(T\left(\frac{1}{z_1}\right), T\left(\frac{1}{z_2}\right), \dots, T\left(\frac{1}{z_{N-1}}\right)\right) = \lambda\,f(S) + f(T). \\ \forall \lambda \in \lambda, \ \forall (P,Q) \in \mathbb{C}_{N-2}[X] \times \mathbb{C}_{N-2}[X], \ f(\lambda\,S+T) = \lambda\,f(S) + f(T). \ f \ \text{est une application linéaire}. \end{split}$$

• Soit
$$S$$
 un élément de Ker f . $f(S) = 0_{\mathbb{C}^{N-1}}$ donc $S\left(\frac{1}{z_1}\right) = S\left(\frac{1}{z_2}\right) = \cdots = S\left(\frac{1}{z_{N-1}}\right) = 0$.

 $z_1, z_2, ..., z_{N-1}$ sont N-1 nombres complexes deux à deux distincts il en est de même pour $\frac{1}{z_1}, \frac{1}{z_2}, ..., \frac{1}{z_{N-1}}$

 $\frac{1}{z_1}$, $\frac{1}{z_2}$, ..., $\frac{1}{z_{N-1}}$ sont N-1 racines deux à deux distinctes de S qui est un polynôme de degré au plus N-2.

Alors S est le polynôme nul.

Donc le noyau de f est réduit au polynôme nul. Ainsi f est une application linéaire injective de $\mathbb{C}_{N-2}[X]$ dans \mathbb{C}^{N-1} . Or $\dim \mathbb{C}_{N-2}[X] = N-1$ et $\dim \mathbb{C}^{N-1} = N-1$ donc $\dim \mathbb{C}_{N-2}[X] = \dim \mathbb{C}^{N-1} < +\infty$.

Dans ces conditions f est une application linéaire bijective de $\mathbb{C}_{N-2}[X]$ dans \mathbb{C}^{N-1} .

$$f$$
 est un isomorphisme de $\mathbb{C}_{N-2}[X]$ sur $\mathbb{C}^{N-1}.$

(b)
$$\forall k \in [0, N-2], \ f(X^k) = \left(\left(\frac{1}{z_1}\right)^k, \left(\frac{1}{z_2}\right)^k, \dots, \left(\frac{1}{z_{N-1}}\right)^k\right) = \left(\frac{1}{(z_1)^k}, \frac{1}{(z_2)^k}, \dots, \frac{1}{(z_{N-1})^k}\right).$$

Pour tout k dans [0, N-2], la matrice des coordonnées de $f(X^k)$ dans la base canonique de \mathbb{C}^{n-1} est \vdots

Alors:

La matrice
$$A$$
 de f dans les bases canoniques de $\mathbb{C}_{N-2}[X]$ et de \mathbb{C}^{N-1} est :
$$\begin{pmatrix} 1 & \frac{1}{z_1} & \cdots & \frac{1}{(z_1)^{N-3}} & \frac{1}{(z_1)^{N-2}} \\ 1 & \frac{1}{z_2} & \cdots & \frac{1}{(z_2)^{N-3}} & \frac{1}{(z_2)^{N-2}} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \frac{1}{z_{N-2}} & \cdots & \frac{1}{(z_{N-2})^{N-3}} & \frac{1}{(z_{N-2})^{N-2}} \\ 1 & \frac{1}{z_{N-1}} & \cdots & \frac{1}{(z_{N-1})^{N-3}} & \frac{1}{(z_{N-1})^{N-2}} \end{pmatrix}$$

$$\text{La transposée de A est:} \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ \frac{1}{z_1} & \frac{1}{z_2} & \cdots & \frac{1}{z_{N-2}} & \frac{1}{z_{N-1}} \\ \vdots & \vdots & & \vdots & \vdots \\ \frac{1}{(z_1)^{N-3}} & \frac{1}{(z_2)^{N-3}} & \cdots & \frac{1}{(z_{N-2})^{N-3}} & \frac{1}{(z_{N-1})^{N-3}} \\ \frac{1}{(z_1)^{N-2}} & \frac{1}{(z_2)^{N-2}} & \cdots & \frac{1}{(z_{N-2})^{N-2}} & \frac{1}{(z_{N-1})^{N-2}} \end{pmatrix}.$$

(c) Soit $(x_1, x_2, \dots, x_{N-1})$ un élément de \mathbb{C}^{N-1} .

$$(x_1, x_2, \dots, x_{N-1})$$
 est solution de (S) si et seulement si ${}^tA \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{N-1} \end{pmatrix} = \begin{pmatrix} P(E_1) \\ P(E_2) \\ \vdots \\ P(E_{N-1}) \end{pmatrix}$.

A est la matrice d'un isomorphisme de $\mathbb{C}_{N-2}[X]$ dans \mathbb{C}^{N-1} dans les bases canoniques de $\mathbb{C}_{N-2}[X]$ et \mathbb{C}^{N-1} . Donc A est une matrice inversible de $\mathcal{M}_{N-1}(\mathbb{C})$. Alors tA est une matrice inversible de $\mathcal{M}_{N-1}(\mathbb{C})$.

Ainsi le système
$$(x_1, x_2, \dots, x_{N-1}) \in \mathbb{C}^{N-1}$$
 et ${}^tA \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{N-1} \end{pmatrix} = \begin{pmatrix} P(E_1) \\ P(E_2) \\ \vdots \\ P(E_{N-1}) \end{pmatrix}$ admet une solution et une seule.

Donc (S) admet une solution et une seule.

$$\text{Le système } (S): (x_1, x_2, \dots, x_{N-1}) \in \mathbb{C}^{N-1} \text{ et} \left\{ \begin{array}{ll} x_1 + x_2 + \dots + x_{N-1} & = P(E_1) \\ \frac{x_1}{z_1} + \frac{x_2}{z_2} + \dots + \frac{x_{N-1}}{z_{n-1}} & = P(E_2) \\ \dots & \dots & \dots \\ \frac{x_1}{(z_1)^{N-2}} + \frac{x_2}{(z_2)^{N-2}} + \dots + \frac{x_{N-1}}{(z_{N-1})^{N-2}} & = P(E_{n-1}) \\ \text{admet une solution et une seule que nous noterons } (\alpha_1, \alpha_2, \dots, \alpha_{N-1}). \end{array} \right.$$

3. Soit n un élément de $[N, +\infty[$. Montrons que $u_n = \sum_{k=1}^{N-1} p q^{k-1} u_{n-k}$.

Si
$$k$$
 appartient $[1, N-1]$, $n-k \geqslant 1$ et $u_{n-k} = \sum_{j=1}^{N-1} \alpha_j \left(\frac{1}{z_j}\right)^{n-k-1}$.

$$\operatorname{Donc} \; \sum_{k=1}^{N-1} \; p \, q^{k-1} \, u_{n-k} = \sum_{k=1}^{N-1} \; p \, q^{k-1} \; \left(\sum_{j=1}^{N-1} \; \alpha_j \; \left(\frac{1}{z_j} \right)^{n-k-1} \right) = \sum_{j=1}^{N-1} \; \alpha_j \; \sum_{k=1}^{N-1} \; \left(p \, q^{k-1} \; \left(\frac{1}{z_j} \right)^{n-k-1} \right).$$

Ainsi
$$\sum_{k=1}^{N-1} p \, q^{k-1} \, u_{n-k} = \sum_{j=1}^{N-1} \frac{\alpha_j}{z_j^{n-1}} \left(\sum_{k=1}^{N-1} p \, q^{k-1} \, z_j^k \right). \text{ Rappelons que } \forall j \in \llbracket 1, N-1 \rrbracket, \, 0 = Q(z_j) = \sum_{k=1}^{N-1} p \, q^{k-1} \, z_j^k - 1.$$

$$\text{Alors } \forall j \in \llbracket 1, N-1 \rrbracket, \ \sum_{k=1}^{N-1} p \, q^{k-1} \, z_j^k = 1. \ \text{Ainsi} : \sum_{k=1}^{N-1} p \, q^{k-1} \, u_{n-k} = \sum_{j=1}^{N-1} \frac{\alpha_j}{z_j^{n-1}} \, \left(\sum_{k=1}^{N-1} p \, q^{k-1} \, z_j^k \right) = \sum_{j=1}^{N-1} \frac{\alpha_j}{z_j^{n-1}} = u_n.$$

Donc
$$u_n = \sum_{k=1}^{N-1} p q^{k-1} u_{n-k}$$
.

Pour tout
$$n$$
 dans $\llbracket N, +\infty \llbracket$, $u_n = \sum_{k=1}^{N-1} p q^{k-1} u_{n-k}$.

Montrons par une récurrence d'ordre N-1 que pour tout n dans \mathbb{N}^* , $P(E_n)=u_n$.

•
$$(\alpha_1, \alpha_2, \dots, \alpha_{N-1})$$
 est solution de (S) donc $\forall n \in [1, N-1], P(E_n) = \frac{\alpha_1}{z_1^{n-1}} + \frac{\alpha_2}{z_2^{n-1}} + \dots + \frac{\alpha_{N-1}}{z_{N-1}^{n-1}} = \sum_{j=1}^{N-1} \alpha_j \left(\frac{1}{z_j}\right)^{n-1}$.

Ainsi, $\forall n \in [1, N-1]$, $P(E_n) = u_n$. La propriété est vraie pour 1, 2, ..., N-1.

 \bullet Soit n dans $[\![N,+\infty[\![$. Supposons la propriété vraie pour $n-N,\,n-N+1,\,...,\,n-1$ et montrons la pour n.

L'hypothèse de récurrence indique que $\forall k \in [1, N-1], P(E_{n-k}) = u_{n-k}$.

De plus
$$(\mathcal{R}_2)$$
 donne $P(E_n) = \sum_{k=1}^{N-1} p q^{k-1} P(E_{n-k})$. lors $P(E_n) = \sum_{k=1}^{N-1} p q^{k-1} u_{n-k} = u_n$. Ceci achève la récurrence.

Pour tout
$$n$$
 dans \mathbb{N}^* , $P(E_n) = u_n$.