E.S.C.P. - E.A.P.

CONCOURS D'ADMISSION SUR CLASSES PREPARATOIRES

OPTION SCIENTIFIQUE

MATHEMATIQUES I

Jeudi 10 Mai 2001, de 8h. à 12h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage d'aucun document ; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

L'objet du problème est l'étude, dans certains cas, des sous-espaces stables par un endomorphisme d'un espace vectoriel.

Dans tout le problème, on considère un entier naturel n non nul et on note E le \mathbb{R} -espace vectoriel \mathbb{R}^n . On note 0_E le vecteur nul de E et Id_E l'endomorphisme identité de E. On dira qu'un sous-espace vectoriel F de E est stable par un endomorphisme f de E (ou que f laisse stable F) si l'inclusion $f(F) \subset F$ est vérifiée. On observera que le sous-espace vectoriel réduit à $\{0_E\}$ et E lui-même sont stables par tout endomorphisme de E.

On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels et, pour tout entier naturel k, on note $\mathbb{R}_k[X]$ le sous-espace vectoriel formé par les éléments de $\mathbb{R}[X]$ qui sont de degré inférieur ou égal à k.

Si f est un endomorphisme de E on pose $f^0=\mathrm{Id}_E,\ f^1=f,\ f^2=f\circ f,\ f^3=f\circ f\circ f,$ etc.

Si f est un endomorphisme de E et si $P = \sum_{k=0}^{n} a_k X^k$ est un élément de $\mathbb{R}[X]$, on rappelle qu'on note P(f)

l'endomorphisme de E égal à $P(f) = \sum_{k=0}^{n} a_k f^k$.

Partie I Préliminaires

Soit f un endomorphisme de E.

- 1) Soit P un élément de $\mathbb{R}[X]$. Montrer que le sous-espace vectoriel $\operatorname{Ker} P(f)$ est stable par f.
- 2) a) Montrer que les droites de E stables par f sont exactement celles qui sont engendrées par un vecteur propre de l'endomorphisme f.
 - b) On note $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et on considère l'endomorphisme g de \mathbb{R}^3 dont la matrice dans la base \mathcal{B} est

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Déterminer (en en donnant une base) les droites de \mathbb{R}^3 stables par g.

- 3) Soit p un entier naturel non nul.
 - a) Si F_1, \ldots, F_p sont p sous-espaces vectoriels de E stables par f, montrer qu'alors la somme $\sum_{k=1}^p F_k$ est un sous-espace vectoriel stable par f.
 - b) Si $\lambda_1, \ldots, \lambda_p$ sont p valeurs propres de f et si n_1, \ldots, n_p sont p entiers naturels montrer qu'alors la somme $\sum_{k=1}^p \operatorname{Ker}(f \lambda_k \operatorname{Id}_E)^{n_k}$ est stable par f.
- 4) a) Soit λ un réel. Vérifier que les sous-espaces vectoriels de E stables par un endomorphisme f sont exactement ceux qui sont stables par l'endomorphisme $f \lambda \operatorname{Id}_E$.
 - b) Quel lien y-a-t-il entre les sous-espaces vectoriels stables par un endomorphisme f et ceux qui sont stables par l'endomorphisme f^2 ?
 - c) Quel lien y-a-t-il entre les sous-espaces vectoriels stables par un automorphisme f et ceux qui sont stables par l'endomorphisme f^{-1} ?
 - d) Que dire d'un endomorphisme de E laissant stable tout sous-espace vectoriel de E?
 - e) Donner un exemple d'endomorphisme de \mathbb{R}^2 ne laissant stable que le sous-espace vectoriel réduit au vecteur nul et l'espace \mathbb{R}^2 .
- 5) a) On rappelle qu'une forme linéaire sur E est une application linéaire de E dans $\mathbb R$ et qu'un hyperplan de E est un sous-espace vectoriel de E de dimension n-1.

 Montrer que les hyperplans de E sont exactement les noyaux de formes linéaires non nulles sur E. On pourra compléter une base d'un hyperplan en une base de E.
 - b) Soit φ une forme linéaire non nulle sur E et $H = \operatorname{Ker} \varphi$.
 - i) Montrer que l'hyperplan H est stable par f si et seulement si il existe un élément λ de $\mathbb R$ vérifiant l'égalité: $\varphi \circ f = \lambda \varphi$.
 - ii) On note A la matrice de f relativement à la base canonique de E et L la matrice (ligne) de φ relativement aux bases canoniques de E et \mathbb{R} .

 Montrer que l'hyperplan H est stable par f si et seulement si il existe un réel λ vérifiant l'égalité: ${}^tA^{\,t}L = \lambda^{\,t}L$.
 - c) Déterminer (en en donnant une base) les plans de \mathbb{R}^3 stables par l'endomorphisme g défini à la question 2).

Partie II Le cas où l'endomorphisme est diagonalisable

Dans cette partie, on considère un endomorphisme f de E diagonalisable et on note $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes et E_1, \ldots, E_p les sous-espaces propres correspondants.

- 1) Que dire des sous-espaces vectoriels de E stables par f si p = 1?
- 2) On suppose l'entier p au moins égal à 2. On considère un sous-espace vectoriel F de E stable par f et un élément x de F.
 - a) Justifier l'existence d'un unique élément (x_1, x_2, \ldots, x_p) de $\prod_{k=1}^p E_k$ vérifiant l'égalité : $x = \sum_{k=1}^p x_k$.
 - b) Montrer que le vecteur $\sum_{k=2}^{p} (\lambda_k \lambda_1) x_k$ est élément de F.
 - c) Montrer que les vecteurs x_1, \ldots, x_p sont tous dans F.
- 3) Déduire de la question précédente que les sous-espaces vectoriels de E stables par f sont exactement les sous-espaces vectoriels de la forme $\sum_{k=1}^p F_k$ où, pour tout entier k vérifiant les inégalités $1 \le k \le p$, F_k est un sous-espace vectoriel de E_k .
- 4) Montrer que l'endomorphisme induit par f sur l'un de ses sous-espaces vectoriels stables F est un endomorphisme diagonalisable de F.
- 5) Donner une condition nécessaire et suffisante portant sur les valeurs propres de f pour que E possède un nombre fini de sous-espaces vectoriels stables par f. Quel est alors ce nombre?

Partie III Le cas où l'endomorphisme est nilpotent d'ordre n

- 1) On note D l'endomorphisme de $\mathbb{R}_{n-1}[X]$ qui à tout polynôme P associe son polynôme dérivé P'.
 - a) Vérifier que D^n est l'endomorphisme nul et que D^{n-1} ne l'est pas.
 - b) Vérifier que les sous-espaces vectoriels de $\mathbb{R}_{n-1}[X]$ stables par D sont, en dehors du sous-espace vectoriel réduit au polynôme nul, les n sous-espaces vectoriels suivants: $\mathbb{R}_0[X], \mathbb{R}_1[X], \mathbb{R}_{n-1}[X]$.
- 2) On note $\mathbf{0}$ l'endomorphisme nul de E et on considère un endomorphisme f de E nilpotent d'ordre n c'est-à-dire vérifiant les conditions: $f^n = \mathbf{0}$ et $f^{n-1} \neq \mathbf{0}$.
 - a) Établir qu'il existe une base $\mathcal{B} = (e_1, e_2, \dots, e_n)$ de E dans laquelle la matrice A de f est

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$$

A est donc la matrice dont le coefficient de la ligne i et de la colonne j $(1 \le i \le n, 1 \le j \le n)$ vaut 1 si j = i + 1 et 0 sinon.

b) Montrer que la matrice A est semblable à la matrice B suivante

$$B = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 0 & n-1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$$

B est donc la matrice dont le coefficient de la ligne i et de la colonne j $(1 \le i \le n, 1 \le j \le n)$ vaut i si j = i + 1 et 0 sinon.

c) Déterminer (en en donnant une base) les sous-espaces vectoriels de E stables par f.

Partie IV Le cas où l'endomorphisme est nilpotent d'ordre 2

Dans cette partie on considère un endomorphisme f de E nilpotent d'ordre 2 c'est à dire un endomorphisme non nul de E tel que $f \circ f$ est l'endomorphisme nul.

- 1) On considère un sous-espace vectoriel F_2 de E vérifiant $F_2 \cap \operatorname{Ker} f = \{0_E\}$.
 - a) Justifier l'inclusion : $f(F_2) \subset \operatorname{Ker} f$.
 - b) On considère de plus un sous-espace vectoriel F_1 de Ker f contenant $f(F_2)$. Montrer que la somme $F_1 + F_2$ est directe et que c'est un sous-espace vectoriel de E stable par f.
 - c) Étant donné A, B, C trois sous-espaces vectoriels de E, établir l'inclusion : $(A \cap C) + (B \cap C) \subset (A+B) \cap C$. A-t-on nécessairement l'égalité?
 - d) Déterminer l'intersection $(F_1 + F_2) \cap \operatorname{Ker} f$.
- 2) Réciproquement on considère un sous-espace vectoriel F de E stable par f. On pose $F_1 = F \cap \operatorname{Ker} f$ et on considère un sous-espace vectoriel F_2 supplémentaire de F_1 dans F.

Vérifier l'inclusion $f(F) \subset \text{Ker } f$ et prouver que l'intersection $F_2 \cap \text{Ker } f$ est réduite au vecteur nul.

3) Dans cette question, on suppose que l'entier n est égal à 4 (i.e. $E = \mathbb{R}^4$) et on considère l'endomorphisme h de E dont la matrice dans la base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$ de \mathbb{R}^4 est la matrice M suivante

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- a) Vérifier que les sous-espaces vectoriels $G_1 = \operatorname{Ker}(h \operatorname{Id})^2$ et $G_2 = \operatorname{Ker}(h 2\operatorname{Id})^2$ sont supplémentaires.
- b) Montrer que les sous-espaces vectoriels stables par h sont exactement les sommes $H_1 + H_2$ où H_1 (resp. H_2) est un sous-espace vectoriel de G_1 (resp. G_2) stable par h.
- c) Déterminer (en en donnant une base) les sous-espaces vectoriels de E stables par h.

Partie V Existence d'un plan stable par un endomorphisme

Soit f un endomorphisme non nul de E.

- 1) Justifier l'existence d'un polynôme non nul à coefficients réels annulant f. On note M un polynôme non nul à coefficients réels de plus bas degré annulant f. On observera que M n'est pas constant.
- 2) Dans cette question, on suppose que le polynôme M n'a pas de racine réelle et on note z l'une de ses racines complexes.
 - a) Vérifier que le conjugué de z est aussi racine de M et en déduire qu'il existe un polynôme du second degré à coefficients réels noté $X^2 + bX + c$ qui divise M.
 - b) Montrer que l'endomorphisme $f^2 + bf + c \operatorname{Id}_E$ n'est pas injectif.
 - c) En déduire qu'il existe un plan de E stable par f.
- 3) Dans cette question, on suppose qu'il existe un réel λ , un réel α non nul et un entier p au moins égal à 2 vérifiant l'égalité: $M = \alpha (X \lambda)^p$. On pose $g = f \lambda \operatorname{Id}_E$.
 - a) Montrer qu'il existe un vecteur x de E tel que la famille $(x, g(x), \dots, g^{(p-1)}(x))$ est libre.
 - b) En déduire qu'il existe un plan de E stable par f .
- 4) Montrer que, dans tous les cas, il existe un plan de E stable par f.