ESSEC

CONCOURS D'ADMISSION DE 1995

Option générale

MATHEMATIQUES 2

Mardi 16 Mai 1995 de 14h à 18h

Les calculatrices de poche, y compris les calculatrices programmables et alphanumériques, à fonctionnement autonome, sans imprimante, sans document d'accompagnement et de format maximum 21cm de long x 15cm de large sont autorisées.

Le problème a pour objet l'étude des arrivées successives des clients à un guichet (distributeur de billets d'une banque, péage d'autoroute, etc).

Dans la partie I sont établis quelques résultats préliminaires d'analyse.

PARTIE I

Dans cette partie, on désigne par λ un nombre réel non nul donné, et l'on se propose d'étudier par récurrence la suite (f_n) de fonctions définies de $[0, +\infty[$ dans $\mathbb R$ vérifiant pour tout entier naturel n les deux conditions suivantes:

- (R_n) pour tout couple (x, y) de réels positifs, f_n vérifie la relation:

$$f_n(x+y) = \sum_{k=0}^n f_{n-k}(x)f_k(y).$$

- (D_n) f_n est dérivable à droite en 0 et l'on a:

$$f_n'(0) \ = \ \lim_{y \to 0 \,,\, y > 0} \frac{f_n(y) - f_n(0)}{y} \ = \ -\lambda \ \sin = 0 \,, \ +\lambda \ \sin = 1, \ \text{et} \ 0 \ \sin \geq 2.$$

1°) Etude du signe de la fonction fo.

Dans cette question, on considère une fonction $f_o: \mathbb{R} + \to \mathbb{R}$ vérifiant (R_o) et (D_o) :

$$(R_0) \quad \forall x, y \ge 0, \quad f_0(x+y) = f_0(x)f_0(y) \quad \text{et} \quad (D_0) \quad f_0'(0) = -\lambda.$$

a) Etablir que f_o n'est pas identiquement nulle sur \mathbb{R}_+ .

En faisant alors x = 0 dans la relation (R_o), déterminer la valeur de f_o(0).

b) En faisant x = y = t/2 dans la relation (R_o) , établir que $f_o(t) \ge 0$ lorsque $t \ge 0$. On se propose enfin d'établir que $f_o(t) > 0$ lorsque $t \ge 0$.

Ecole Supérieure des Sciences Economiques et Commerciales Etablissement d'enseignement supérieur privé reconnu par l'Etat affilié à la Chambre de Commerce et d'Industrie de Versailles - Val d'Oise-Yvelines; membre de la Fesic A cet effet, on raisonne par l'absurde et l'on suppose qu'il existe un nombre réel positif t_o tel que $f_o(t_o) = 0$. En déduire que $f_o(t_o/2) = 0$, puis, pour tout entier $n \ge 1$, que $f_o(t_o/2^n) = 0$. Montrer qu'alors $f_o(0) = 0$, et conclure.

2°) Existence et unicité de la fonction fo.

Dans cette question, on considère $f_o: \mathbb{R}_+ \to \mathbb{R}$ vérifiant (R_o) et (D_o) .

- a) On considère un nombre réel strictement positif x.
- En formant pour y > 0 le rapport $[f_o(x+y)-f_o(x)]/y$, prouver que f_o est dérivable à droite en x et exprimer sa dérivée à droite en x.
- Justifier, à l'aide du résultat obtenu au 1°, l'égalité $f_0(x-y) = f_0(x)/f_0(y)$ pour $0 \le y \le x$.
- En formant pour $0 < y \le x$ le rapport $[f_o(x-y)-f_o(x)]/(-y)$ à l'aide de cette expression de $f_o(x-y)$, prouver que f_o est dérivable à gauche en x et exprimer sa dérivée à gauche en x.
- b) En déduire que f_o est dérivable sur $\mathbb{R}+$ et exprimer $f_o'(x)$ en fonction de λ et $f_o(x)$.
- c) Dériver la fonction $x \to \exp(\lambda x).f_0(x)$, puis en déduire $f_0(x)$ en fonction de λ et x.
- d) Réciproquement, montrer que la fonction dérivable fo ainsi obtenue vérifie (Ro) et (Do).

3°) Existence et unicité de la fonction f1.

La fonction f_0 étant ainsi obtenue, on considère $f_1: \mathbb{R} + \to \mathbb{R}$ vérifiant (R_1) et (D_1) :

$$(R_1) \quad \forall x, y \ge 0, \quad f_1(x+y) = f_1(x)f_0(y) + f_0(x)f_1(y) \quad \text{et} \quad (D_1) \quad f_1'(0) = \lambda.$$

- a) Déterminer $f_1(0)$ à l'aide de la relation (R_1) , et en déduire la limite du quotient $f_1(y)/y$ quand y tend vers 0 (y > 0).
- b) On considère un nombre réel strictement positif x.
- En formant pour y > 0 le rapport $[f_1(x+y)-f_1(x)]/y$, prouver que f_1 est dérivable à droite en x et exprimer sa dérivée à droite en x.
- Justifier l'égalité $f_1(x) = f_1(x-y)f_0(y) + f_0(x-y)f_1(y)$ pour $0 \le y \le x$ et en déduire une expression de $f_1(x-y)$.
- En formant pour $0 < y \le x$ le rapport $[f_1(x-y)-f_1(x)]/(-y)$ à l'aide de cette expression de $f_1(x-y)$, prouver que f_1 est dérivable à gauche en x et exprimer sa dérivée à gauche en x.
- c) En déduire que f_1 est dérivable sur $\mathbb{R}+$ et exprimer $f_1'(x)$ en fonction de λ , $f_0(x)$ et $f_1(x)$.
- d) Dériver la fonction $x \to \exp(\lambda x).f_1(x)$, puis en déduire $f_1(x)$ en fonction de λ et x.
- e) Réciproquement, montrer que la fonction dérivable f_1 ainsi obtenue vérifie (R_1) et (D_1) .

4°) Existence et unicité de la fonction f2.

Les fonctions f_0 et f_1 étant ainsi obtenues, on considère f_2 : $\mathbb{R}+\to\mathbb{R}$ vérifiant (R_2) et (D_2) .

- a) Déterminer $f_2(0)$ à l'aide de la relation (R_2) et en déduire la limite du quotient $f_2(y)/y$ quand y tend vers 0 (y > 0).
- b) On considère un nombre réel strictement positif x.
- En formant pour y > 0 le rapport $[f_2(x+y)-f_2(x)]/y$, prouver que f_2 est dérivable à droite en x et exprimer sa dérivée à droite en x.
- Justifier l'égalité $f_2(x) = f_2(x-y)f_0(y) + f_1(x-y)f_1(y) + f_0(x-y)f_2(y)$ pour $0 \le y \le x$ et en déduire une expression de $f_2(x-y)$.
- En formant pour $0 < y \le x$ le rapport $[f_2(x-y)-f_2(x)]/(-y)$ à l'aide de cette expression de $f_2(x-y)$, prouver que f_2 est dérivable à gauche en x et exprimer sa dérivée à gauche en x.
- c) En déduire que f_2 est dérivable sur $\mathbb{R}+$ et montrer que $f_2'(x)=\lambda(f_1(x)-f_2(x))$.
- d) Dériver la fonction $x \to \exp(\lambda x).f_2(x)$, puis en déduire $f_2(x)$ en fonction de λ et x.
- e) Réciproquement, montrer que la fonction dérivable f₂ ainsi obtenue vérifie (R₂) et (D₂).

5°) Généralisation: existence et unicité de la fonction f_n ($n \ge 2$).

On suppose avoir obtenu, pour tout entier k tel que $0 \le k < n$, une et une seule fonction f_k vérifiant (R_k) et (D_k) , dérivable sur $\mathbb{R}+$ et vérifiant $f_k(0)=0$ pour $k\ge 1$.

On considere alors une fonction $f_n: \mathbb{R}_+ \to \mathbb{R}$ vérifiant (R_n) et (D_n) .

- a) Déterminer $f_n(0)$ et la limite du quotient $f_n(y)/y$ quand y tend vers 0 (y > 0).
- b) Etablir la dérivabilité de f_n sur \mathbb{R} + et exprimer $f_n'(x)$ en fonction de λ , $f_{n-1}(x)$, $f_n(x)$.
- c) Dériver la fonction $x\to \exp(\lambda x).f_n(x)$, puis en déduire $f_n(x)$ en fonction de λ et x, d'abord lorsque n=3, puis, par récurrence, dans le cas général.
- d) Réciproquement, montrer que la fonction dérivable f_n ainsi obtenue vérifie (R_n) et (D_n) .

PARTIE II

On considère les arrivées successives des clients à un guichet.

Etant donnés deux nombres réels t_1 , t_2 tels que $t_1 < t_2$, on note $N(t_1, t_2)$ la variable aléatoire indiquant le nombre de clients se présentant au guichet dans l'intervalle de temps $]t_1, t_2]$ et l'on note $P(N(t_1, t_2) = n)$ la probabilité pour que n clients exactement se présentent au guichet dans l'intervalle de temps $]t_1, t_2]$.

(Par convention, on posera $P(N(t_1, t_1) = 0) = 1$, et, lorsque $n \ge 1$, $P(N(t_1, t_1) = n) = 0$). On fait, dans toute la suite du problème, les trois hypothèses suivantes:

A) Etant donnés quatre nombres réels t_1 , t_2 , t_3 , t_4 tels que $t_1 \le t_2 \le t_3 \le t_4$, les variables aléatoires $N(t_1, t_2)$ et $N(t_3, t_4)$ sont indépendantes.

(Cette hypothèse signifie que les nombres de clients se présentant au cours de deux intervalles de temps disjoints sont indépendants).

B) Pour tout entier naturel n existe une fonction $p_n: \mathbb{R}_+ \to \mathbb{R}$ telle que, pour tout couple de nombres réels (t_1, t_2) tels que $t_1 \le t_2$:

$$P(N(t_1, t_2) = n) = p_n(t_2-t_1).$$

(Cette hypothèse signifie que la probabilité pour que n clients se présentent entre les instants t1 et t2 dépend uniquement de la durée t2-t1).

C) Il existe un réel $\lambda > 0$ et des fonctions ϵ_1 , ϵ : $\mathbb{R}_+ \to \mathbb{R}$ de limite nulle en 0 tels que, pour tout couple de nombres réels (t_1, t_2) tel que $t_1 \le t_2$:

 $P(N(t_1, t_2) = 1) = \lambda(t_2-t_1) + (t_2-t_1).\epsilon_1(t_2-t_1)$ et $P(N(t_1, t_2) \ge 2) = (t_2-t_1).\epsilon(t_2-t_1)$. (Cette hypothèse signifie que, pour une courte durée t_2-t_1 :

- la probabilité d'arrivée d'un seul client pendant cette courte durée t2-t1 est approximativement proportionnelle à t2-t1.
- la probabilité d'arrivée de plus d'un client pendant cette courte durée t2-t1 est négligeable devant la probabilité d'arrivée d'un seul client).
- 1°) Equation fonctionnelle des fonctions pn.

On considère dans cette question deux nombres réels positifs x, y.

- a) Exprimer P(N(0, x+y) = 0) en fonction de P(N(0, x) = 0) et de P(N(x, x+y) = 0) et en déduire que $p_o(x+y) = p_o(x)p_o(y)$.
- b) Etablir plus généralement que, pour tout entier naturel n, on a:

$$p_n(x+y) = \sum_{k=0}^{n} p_{n-k}(x)p_k(y).$$

2°) Dérivabilité en 0 des fonctions pn.

a) Etablir l'existence d'une fonction $\epsilon_o \colon \mathbb{R} + \to \mathbb{R}$ de limite nulle en 0 telle que:

$$\mathsf{P}(\mathsf{N}(\mathsf{t}_1,\,\mathsf{t}_2)=0)=1\,-\,\lambda(\mathsf{t}_2\text{-}\mathsf{t}_1)\,+\,(\mathsf{t}_2\text{-}\mathsf{t}_1).\varepsilon_o(\mathsf{t}_2\text{-}\mathsf{t}_1).$$

- b) Etablir, pour tout entier $n \ge 2$, l'existence d'une fonction $\varepsilon_n \colon \mathbb{R} + \to \mathbb{R}$ de limite nulle en 0 telle que: $P(N(t_1, t_2) = n) = (t_2 t_1) \cdot \varepsilon_n(t_2 t_1)$.
- c) Etablir, en posant $x=t_2-t_1$, que $p_o(x)=1-\lambda x+x.\epsilon_o(x)$, que $p_1(x)=\lambda x+x.\epsilon_1(x)$ et donner de même un développement limité à l'ordre 1 de p_n pour $n\geq 2$.
- d) En déduire la valeur de $p_0'(0)$, de $p_1'(0)$ et de $p_n'(0)$ pour $n \ge 2$.

3°) Loi de la variable aléatoire N(t1, t2).

- a) Etablir que les fonctions p_0 , p_1 et p_n pour $n \ge 2$ vérifient les hypothèses (R_n) et (D_n) du I.
- b) En déduire les expressions de $p_n(x)$ et $P(N(t_1, t_2) = n)$ pour tout entier naturel n et montrer que la variable aléatoire $N(t_1, t_2)$ suit une loi de Poisson de paramètre $\lambda(t_2-t_1)$.

4°) Loi de l'instant d'arrivée du n° client.

On fixe un instant-origine et l'on note T_n la variable aléatoire (à valeurs dans $\mathbb{R}+$) indiquant l'instant d'arrivée du n^{ième} client ($n \ge 1$) à partir de cet instant-origine.

- a) Comparer pour tout réel positif t les événements "N(0, t) \leq n-1" et "T_n > t".
- b) En déduire la loi de T₁, et reconnaître celle-ci.
- c) En déduire de même la fonction de répartition et la densité de T_2 , de T_3 , puis de T_n (dont la loi s'appelle *loi gamma de paramètres n et \lambda*).
- d) Déterminer l'espérance et la variance de cette variable aléatoire T_n.

5°) Loi du nombre de clients procédant à un achat.

On désigne par p (où $0) la probabilité pour qu'un client se présentant au guichet procède à un achat et par <math>A(t_1, t_2)$ la variable aléatoire indiquant le nombre de clients se présentant au guichet dans l'intervalle de temps $]t_1, t_2]$ et procédant à un achat.

- a) Soient n et k deux entiers tels que $0 \le k \le n$.
- Déterminer la probabilité conditionnelle $P(A(t_1, t_2) = k / N(t_1, t_2) = n)$ et reconnaître la loi de $A(t_1, t_2)$ conditionnée par l'événement $N(t_1, t_2) = n$.
- b) A l'aide de la formule des probabilités totales, en déduire la loi de la variable aléatoire $A(t_1, t_2)$ et préciser son espérance.
- c) Donner, de même, la loi de la variable aléatoire $B(t_1, t_2)$ indiquant le nombre des clients se présentant au guichet dans l'intervalle de temps $]t_1, t_2]$ et ne procédant pas à un achat.
- d) Etudier enfin l'indépendance des variables aléatoires A(t1, t2) et B(t1, t2).