Preliminaires: Trace d'une matrice et d'un endomorphisme

1) $A = (a_{ij})$ et $B = (b_{ij})$ sont deux éléments de $\mathcal{M}_p(\mathbb{R})$ d'où:

$$\text{Tr}(AB) = \sum_{c=1}^{p} \left(\sum_{d=1}^{n} a_{cd}b_{dc} \right), \quad \text{Tr}(AB) = \sum_{c=1}^{p} \left(\sum_{d=1}^{n} a_{cd}b_{dc} \right) = \sum_{d=1}^{n} \left(\sum_{c=1}^{p} b_{dc}a_{cd} \right) = \text{Tr}(BA)$$

D'où $\text{Tr}(AB) = \text{Tr}(BA)$.

2) η et η' sont semblables d'où il y a une matrice inversible P de $\mathcal{M}_p(\mathbb{R})$ telle que: $P^{-1}\eta P = \eta'$.

$$\text{Tr}(\eta) = \text{Tr} \left((P^{-1}\eta P) \right) = \text{Tr} \left(\eta (P^t P) \right) = \text{Tr} \left(P (P^t P) \right) = \text{Tr} \left(PP^t P \right) = \text{Tr} (PP^t)$$

D'où $\text{Tr}(\eta) = \text{Tr}(\eta')$.

3) Si η et η' sont deux matrices semblables de $\mathcal{M}_p(\mathbb{R})$: $\text{Tr}(\eta) = \text{Tr}(\eta')$.

Partie I: Etude des éléments de l'ensemble $T(E)$

9) 1) soit x un élémt.

ν-linéaire orthogonale à x si $\forall \omega \in \nu(x), \langle \omega, x \rangle = 0$.

ν-linéaire orthogonale à x si $\nu(x) = \text{vect}(x)$.

Pour tout v appartenant à E, l'unique norme linéaire $\lambda(v)$ tel que $\nu = \lambda(v) x_n$. Pour exemple $
u = \text{vect}(x)

2) ν est un noyau de ω si $\forall \omega \in \nu(v), \langle \omega, x \rangle = 0$.

$\nu \in (\text{vect}(x))^2$. Ainsi $E = \text{vect}(x) + x$ et même $E = \text{vect}(x) + x$!

Nan c'est pas la case.

D'apônt: $\text{vect}(x) + x \in E$.

Réciproquement soit v un élément de E. $v = \lambda(v) x + (\nu - \lambda(v)) x$. Car $\nu(v) = \text{vect}(x)$ et $\nu - \lambda(v)$ est orthogonal à x d'après x. Ainsi $v = \text{vect}(x) + x$ pour certain $E \in \text{vect}(x) + x$.

Finalement: $E = \text{vect}(x) + x$. Notion que ω comme et d'ici.

Soit $\omega \in \text{vect}(x) + x$. Enfin, $\omega = \lambda \omega$ et ω est orthogonal à x car et orthogonal à x.

Ainsi $\langle \omega, x \rangle = 0$; donc $\omega = \lambda x = \lambda x_2$. Et alors seul cas $\lambda x_2 = 0$, il n'est pas. Ainsi $\omega = 0$.

Lemme 2.1

\(\forall x \in E, \forall \lambda \in \mathbb{R}, \lambda x = \langle x, x \rangle \lambda x \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)

\(\forall \lambda \in \mathbb{R}, \lambda \tau = \lambda \tau \)
b) \(Sp(u_k) = \{ 0, \text{dim} u_k \} \)

\[1g(u_k) \leq 3 \text{ et } u_k \neq 0 \text{ donc } 1g(u_k) = 3 \text{ et ainsi dim } K u_k = p-1. \]

Par conséquent, \(SEP(u_k, 0) = p-1 \) et donc nécessairement \(dim \text{ SEP}(u_k, 11k^2) = 1. \)

\[\text{Vérifier } u_k(t) = \langle k, t \rangle \Rightarrow k = 0, u = 0 \text{ et } x \in \text{ SEP}(u_k, 0) \quad \Rightarrow \quad \text{dim } k = p-1 = \text{ dim } \text{ SEP}(u_k, 0); \quad \text{SEP}(u_k, 0) = X. \]

\[u_k(x) = \langle k, k \rangle = 11k^2 = 11k^2 x \quad \Rightarrow \quad x \in \text{ SEP}(u_k, 11k^2) \text{. Comme } k \text{ n'est pas nul et que } \text{SEP}(u_k, 11k^2) \text{ est une droite vectorielle : } \text{SEP}(u_k, 11k^2) = \text{Vect}(k). \]

c) Remarquons que le vecteur \(B = (x, e_1, \ldots, e_p) \) précédente.

\[(f \circ u_k)(x) = \begin{cases} 11k^2 x & \text{si } x = 11k^2 \left[\lambda f(x) \right] + (x-11k^2) \end{cases} \]

la composante du vecteur \((f \circ u_k)(x)\) relative au premier vecteur de \(B \) et

\[11k^2 \lambda f(x) \quad \text{avec} \quad 11k^2 \left[\lambda f(x) \right] \in \mathbb{C}^{d n} e_{x} \quad (e_{q}, e_{r}, \ldots, e_{p}). \]

Cette composante est encore : \(11k^2 \left[\frac{f(x)}{11k^2} \right] = \left[f(x) \right] \).

Vérifions \((f \circ u_k)(x) = f(11k^2 x) = 0 \)

Pour tout \(i \) dans \(\mathbb{C}^{d n} \), la composante de \((f \circ u_k)(x)\) sur le vecteur \(e_i \) de \(B \) est : \((f \circ u_k)(x) = 0 \)

Ainsi la trace de \((f \circ u_k)\) est \((f(x), x) \).

\[\text{Q3 a) } \text{Im } u = \text{Vect}(x). \text{ Si } u(x) \in \text{Im } u \text{ donc } \exists \lambda \in K, u(x) = \lambda x. \]

Ainsi \(x \neq 0 \) et \(u(x) = \lambda x \). \(x \) est un vecteur propre de \(u \).

\[u \in K \text{ donc } \langle k, u(x) \rangle = 0; \quad \langle x, x \rangle = 0; \quad j \langle 11k^2 \rangle = 0. \]

Ainsi \(y > 0 \) car \(11k^2 > 0 \). Il est positif.

\[b) \text{Posons d'abord qué : } x \in \text{ker } u. \text{ Soit } t \text{ un élément de } x. \begin{cases} x \neq 0 \text{ et } t \neq 0 \text{ et } z \neq 0 \text{ et } 3 \text{ de } K \text{ \text{Et } u(z) = 0.} \end{cases} \]

\[\langle u(t), x \rangle = \langle t, u(x) \rangle = \langle t, \lambda x \rangle = \lambda \langle t, x \rangle = 0. \]
\[V \in E, \quad \langle u(t), v \rangle = 0. \quad \text{Dans} \quad u(t) \in E^t, \quad u(t) = 0_E; \quad \text{téléau.} \]

\[\text{Ainsi} \quad V \in E, \quad \langle u(t), v \rangle = 0. \quad \text{Dans} \quad u(t) \in E^t, \quad u(t) = 0_E; \quad \text{téléau.} \]

\[\text{La détermination est faite.} \quad \text{La solution est unique.} \]

\[\text{Soit} \quad u \in E \text{ de } E. \quad \langle u, v \rangle = \frac{\langle u, v \rangle}{\|u\| \|v\|}. \]

\[u - \langle u, v \rangle v \text{ est} \quad u - \langle u, v \rangle v = 0. \]

\[\text{Ainsi} \quad u(t) = \lambda(t) u(x) + u(\lambda^{-1}(x)) = \lambda(t) u(x) = \frac{\langle x, v \rangle}{\|x\| \|v\|} u. \]

\[V \in E, \quad u(v) = \frac{\langle x, v \rangle}{\|x\| \|v\|} u. \]

\[\text{Posons} \quad y = \frac{\langle x, v \rangle}{\|x\| \|v\|} u. \quad y \in E \text{ et } V \in E, \quad u(v) = \langle y, v \rangle u = u(y(v)). \]

\[\text{Ainsi} \quad \exists y \in E, \quad u = u(y); \quad \text{mieux} \quad \exists y \in E \text{ telle que} \quad u = u(y). \]

\[\Delta \quad \text{Attention ici car l'application est un : que je noterais } \phi, \text{ n'est pas linéaire ne serait-ce que parce que } T(E) \text{n'est pas un espace vectoriel !} \]

\[\text{Observons que } \phi \text{ est une application de } E \text{ dans } T(E) \text{ d'après } \phi \text{ est par que } u_0 = a_0(t) T(t) ! \quad \text{soit } x \in E \text{ et } 0_E, \quad V \in E, \quad u(x) = \langle x, v \rangle u(x) = \langle x, v \rangle \bar{u} = u(-x) \]

\[\text{Ainsi} \quad u(x) = u(-x) \quad \text{et } \quad -x = 0_E. \]

\[\text{Donc} \quad \phi(x) = \phi(-x) \quad \text{avec } \quad -x = 0_E. \quad \phi \text{ n'est pas injective.} \]

\[\text{N'oubliez que } \phi \text{ est injective, soit } u \text{ un élément quelconque de } T(E). \]

\[\text{N'oubliez que : } \exists y \in E, \quad \phi(y) = u \text{ ou } u(y) = u \]

\[\text{Si } u \text{ n'est pas nul c'est dû à l'affaire de } T(t) \text{ et } \text{n'oubliez pas que } y \in E \text{ est l'affaire.} \]

\[\text{Ainsi} \quad V \in T(E), \exists y \in E, \quad \phi(y) = u. \quad \phi \text{ est injective.} \]

\[\text{Exercice :} \quad \text{n'oubliez que : } \langle v(x), v' \rangle \in E^t, \phi(x) = \phi(t) \Rightarrow x = x \text{ et } x = -x \ldots \text{ many variations.} \]
Partie II Approximation des éléments de $s(E)$
par les éléments de $T(E)$.

(1) a) Rappelons que $Tr : \mathbb{P}_0(\mathbb{R}) \rightarrow \mathbb{R}$ est linéaire.

Ainsi $v(a,b) \in \mathbb{P}_0(\mathbb{R})$, $v \in \mathcal{E}$, $Tr(aA + b) = aTr(A) + Tr(b)$.

Rappelons que: $v(f,g) \in \mathcal{E}$, $v \in \mathcal{E}$, $Tr(\lambda f + g) = \lambda Tr(f) + Tr(g)$.

Notons que $[\cdot, \cdot]$ est un produit scalaire sur \mathcal{E}

→ $[\cdot, \cdot]$ est une application de $\mathcal{E} \times \mathcal{E}$ dans \mathbb{R} (1)

→ $\text{diag}(f,g,h) \in \mathcal{E}^3$ et $\lambda \in \mathbb{R}$

- $[fg, gh] = Tr[(fg)(gh)] = Tr[(f, g + g, h)] = \lambda Tr(fg) + Tr(gh) = \lambda [f, g] + [g, h]$ (2)
- $[f, g] = Tr(fo) = Tr(go) = [g, f]$ (3)

Ainsi:

Soit \mathcal{B} une base orthonormée de \mathcal{E}. Posons $A = (a_{ij}) = \mathbf{P}_0(f)$.

- $[f, g] = Tr(fo) = Tr(a^2) = \sum_{i=1}^{\mathcal{P}} \sum_{k=1}^{\mathcal{U}} a_{ik} a_{kj}$.

- \mathcal{B} est symétrique et la base \mathcal{B} est orthogonale ; notons $v(i, j) \in \mathcal{B}, F_{ij}$, $a_{ij} = a_{ji}$.

$[f, g] = \sum_{i=1}^{\mathcal{P}} \sum_{k=1}^{\mathcal{U}} q_{ik} a_{ij} a_{kj} = \sum_{i=1}^{\mathcal{P}} \sum_{k=1}^{\mathcal{U}} q_{ik} a_{ik} = \sum_{i=1}^{\mathcal{P}} \sum_{k=1}^{\mathcal{U}} q_{ik}^2 \Rightarrow 0$. $[f, g] \Rightarrow 0$ (4)

Supposons $[f, g] = 0$, alors $\left| \sum_{i=1}^{\mathcal{P}} \sum_{k=1}^{\mathcal{U}} q_{ik}^2 = 0 \right| \forall v(i, j) \in \mathcal{B}, F_{ij}$, $q_{ik} = 0$.

Ainsi $v(i, k) \in \mathcal{B}, F_{ik}$, $q_{ik} = 0$. $A = 0_{\mathcal{P}(\mathbb{R})}$ donc $f = 0_{\mathcal{E}(\mathbb{E})}$.

$\forall v \in s(E), [f, f] = 0 \Rightarrow f = 0_{s(E)}$ (5)

(1), (2), (3), (4) et (5) montrent que $[\cdot, \cdot]$ est un produit scalaire sur \mathcal{E}.

b) $N^1(f - u_k) = N^1(f) - 2[f, u_k] + N^1(u_k) = N^1(f) - 2Tr(fou_k) + Tr(u_kou_k)$.

Si k n'est pas nul, 2 $\neq 0$ faisons $Tr(fou_k) = \langle f, x \rangle$ et $Tr(u_kou_k) = \|x\|^4$ et

- $N^1(f - u_k) = N^1(f) - 2\langle x, f(x) \rangle + \|x\|^4$.

Si $k = 0$, $N^1(f - u_k) = N^1(f) = N^1(f) - 2\langle \delta, f(x) \rangle + \|\delta\|^2$. $\delta u_k = 0$.$\delta u_k = 0$.
Finalement, \(N^2(x_{-u}) = N^2(y) - 2 \langle x, y \rangle + 11x II^4 \) pour \(y \in E \) et \(u \in T(E) \).

a) Soit \(y \in E \).

\[
\begin{align*}
F(x+ty) &= N^2(x) - 2 \langle x, y \rangle + 11x II^4 \\
F(x) &= N^2(x) - 2 \langle x, f(x) \rangle - 2 \langle y, f(x) \rangle - 2t^2 \langle y, f(y) \rangle + (11x II^2 + 2t \langle x, y \rangle + t^4 II^4)^2 \text{Nott}ur \text{ que } \langle y, f(x) \rangle = \langle x, f(y) \rangle \text{ car } f \text{ est préhameque. N'oublions pas que } II^4 y = 1.
\end{align*}
\]

Ainsi \(F(x) = N^2(x) - 2 \langle x, f(x) \rangle - 4t \langle y, f(x) \rangle - 2t^2 \langle y, f(y) \rangle + 11x II^4 + 4t^2 \langle x, y \rangle + t^4 + 4 \) \(11x II^4 + 4 \langle x, y \rangle + 2 \left(2 \langle x, y \rangle^2 + 11x II^4 - \langle y, f(y) \rangle \right) t^2 + 2 \left(2 \langle x, y \rangle + 11x II^4 \right) \langle y, f(y) \rangle t^2 + 4 \left(11x II^4 - \langle y, f(y) \rangle \right) II^4 + II^4 + N^2(y) - 2 \langle x, f(x) \rangle
\]

Ce qui donne une fonction polynôme de degré 4.

b) Supposons que \(y \in E \), \(F(x) \leq F(y) \).

Alors \(y \in \text{EIR} \) si \(F(x) \leq F(x+ty) \). \(y \in \text{EIR} \), \(h(0) \leq h(t) \).

\(h \) prend un minimum en 0 et donc \(h'(0) = 0 \). (À noter que l'onde de \((x,t) \)-polynôme)

c) D'ou l'on obtient a) donc sans difficulté \(h'(0) = 4(11x II^4 - \langle y, f(y) \rangle)
\]

Ainsi \(4 \left(11x II^4 - \langle y, f(y) \rangle \right) = 0 \) or \(11x II^4 - \langle y, f(y) \rangle = 0 \) et cela,

pour tout vecteur unitaire \(y \) de \(E \).

\(\forall y \in E \), \(II^4 y = 1 \) \(\Rightarrow 0 = 11x II^4 - \langle y, f(y) \rangle = <11x II^4 - f(x), y>
\)

Soit \(\langle c_0, c_1, \ldots, c_p \rangle \) une base orthogonale de \(E \).

\(\forall c_0, c_1, \ldots, c_p \in \text{EIR} \), \(\forall \epsilon > 0 \), \(\forall \epsilon > 0 \), \(11x II^4 - f(y) \) est orthogonal à \(\epsilon \).

Ainsi \(11x II^4 - f(y) \in \left(\text{Vect}(c_0, c_1, \ldots, c_p) \right)^\perp = E^\perp = \{0 \}_{E} \).

\(\forall \epsilon = 11x II^4 - f(y) \).

d) Soit \(y \in E \).

\[
F(x+ty) - F(x) = h(t) - \left(N^2(y) - 2 \langle x, y \rangle + 11x II^4 \right)
\]

\[
= t^4 + 4 \langle x, y \rangle + 2 \left(2 \langle x, y \rangle + 11x II^4 - \langle y, f(y) \rangle \right) t^2 + 4 \left(11x II^4 - \langle y, f(y) \rangle \right) t^4 + II^4 + N^2(y) - 2 \langle x, f(x) \rangle - 11x II^4 + II^4 - 2 \langle x, f(y) \rangle.
\]
Supposons que \(F(z) = u(z) \); c'est-à-dire que \(F \) prête une minimisation en \(z \).

Alors on a d'abord \(f(z) = \text{II} \cdot z \).

Soit \(y \) un vecteur unitaire de \(E \).

Veuillez, \(F(z + y) \geq F(z) \) d'abord \(V \in \mathbb{R}^n \), \(t^2 \left[(t + 2 \langle y, x \rangle)^2 + 2 (\text{II} \cdot z - \langle y, f(z) \rangle) \right] \geq 0
\)

Par conséquent : \(V \in \mathbb{R}^n \), \((t + 2 \langle y, x \rangle)^2 + 2 (\text{II} \cdot z - \langle y, f(z) \rangle) \geq 0 \)

Par calculé : \(V \in \mathbb{R}^n \), \((t + 2 \langle y, x \rangle)^2 + 2 (\text{II} \cdot z - \langle y, f(z) \rangle) \geq 0 \).

En faisant \(t = -2 \langle y, x \rangle \) on obtient : \(\text{II} \cdot z - \langle y, f(z) \rangle \geq 0 \) ou : \(\langle y, f(z) \rangle \leq \text{II} \cdot z \).

Ainsi \(\overline{F(z)} = u(z) \) on a : \(\text{I}(i) \), \(f(z) = \text{II} \cdot z \).

(\text{ii}) pour tout vecteur unitaire \(y \) : \(\langle y, f(z) \rangle \leq \text{II} \cdot z \).

Réciproquement supposons que l'on a (i) et (ii) et montrons que \(F(z) = u(z) \).

Il s'agit de prouver que : \(\forall z \in E, \ F(z) \leq F(y) \) ... au \(y \in E - \{x\}, \ F(z) \leq F(y) \).

Soyons \(y = \frac{1}{\text{II} - z} (z - x) \) et \(t = \text{II} - z \).

Alors \(y \) est un vecteur unitaire, \(E \in \mathbb{R}^n \) et \(z = x + y \).

(i) donne \(f(z) = \text{II} \cdot x \), qui donne comme dans \(y \) de (ii):

\[F(x + y) - F(x) = t^2 \left[(t + 2 \langle y, x \rangle)^2 + 2 (\text{II} \cdot y - \langle y, f(z) \rangle) \right] \]

\(\geq 0 \), \((t + 2 \langle y, x \rangle)^2 + 2 (\text{II} \cdot y - \langle y, f(z) \rangle) \geq 0 \) grâce à (i).

Ainsi \(F(x + y) \geq F(x) \) donc \(F(y) \geq F(x) \).

\(\forall z \in E - \{x\}, \ F(z) \leq F(y) \). \(F \) prête une minimisation en \(z \) ; \(F(z) = u(z) \).

Ainsi \(F(z) = u(z) \iff \text{I}(i) \), \(f(x) = \text{II} \cdot x \\ (\text{ii}) pour tout vecteur unitaire \(y \) : \(\langle y, f(z) \rangle \leq \text{II} \cdot y \).
(9.3) 1) S'atou endomorphisme sylnétique de l'espace vectoriel euclidien E d'où
de part une base \(B = (e_1, e_2, \ldots, e_p) \) de E, orthonormale et continue de deux propres de \(f \).

2) On note \[N(g) = \left(\begin{array}{c} \lambda_1 g (0) \\ \vdots \\ \lambda_p g (0) \end{array} \right), \quad \Pi(g) = \left(\begin{array}{c} \lambda_1^2 g (0) \\ \vdots \\ \lambda_p^2 g (0) \end{array} \right), \]

et \[W(g) = \sqrt{\sum_{i=1}^{p} \lambda_i^2 g (0)}. \]

3) D'où y un espace unitaire de \(E \). \(\exists (y_1, y_2, \ldots, y_p) \in \mathbb{R}^p, y = \sum_{i=1}^{p} y_i e_i. \)

\[\langle y, g(y) \rangle = \sum_{i=1}^{p} y_i (y_i e_i) = \sum_{i=1}^{p} y_i^2. \]

\((e_1, e_2, \ldots, e_p) \) étant une base orthonormale : \[\langle y, g(y) \rangle = \sum_{i=1}^{p} \lambda_i y_i^2 = \sum_{i=1}^{p} \lambda_i. \]

\[\langle y, g(y) \rangle = \sum_{i=1}^{p} \lambda_i y_i^2 = \sum_{i=1}^{p} \lambda_i y_i^2 = \lambda_p \| y \|_{11}^2 = \lambda_p \text{ car } \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_p \text{ et } \| y \|_{11} = 1 \]

De plus : \[\langle e_p, (g(e_p)) \rangle = \langle e_p, \lambda_p e_p \rangle = \lambda_p \| e_p \|_{11}^2 = \lambda_p. \]

D'où \(y \in E, \| y \|_{11} = 1 \Rightarrow \langle y, g(y) \rangle \leq \lambda_p = \langle e_p, (g(e_p)) \rangle. \]

Ainsi : \(\lambda_p \) est le plus grand élément de \[\{ \langle y, g(y) \rangle ; y \in E, \| y \|_{11} = 1 \}. \]

Examinons un espace unitaire \(y = \sum_{i=1}^{p} y_i e_i \) de \(E \). \[\langle y, g(y) \rangle = \sum_{i=1}^{p} \lambda_i y_i^2 = \sum_{i=1}^{p} (\lambda_i - \lambda_p) y_i^2 \]

\(\langle y, g(y) \rangle = \lambda_p \iff \sum_{i=1}^{p} \lambda_i y_i^2 = \lambda_p \iff \sum_{i=1}^{p} \lambda_i y_i^2 = \sum_{i=1}^{p} \lambda_p y_i^2 \iff \sum_{i=1}^{p} (\lambda_p - \lambda_i) y_i^2 = 0. \]

Notons que : \(\forall e \in E, \lambda_p - \lambda_i) y_i^2 \geq 0. \)

\(\forall e \in E, \langle y, g(y) \rangle = \lambda_p \iff \forall e \in E, \lambda_p - \lambda_i) y_i^2 = 0. \)

Soit \(\lambda \) le plus petit élément de \(\{ \lambda_1, \lambda_2, \ldots, \lambda_p \} \).

\(\forall e \in E, \lambda \leq \lambda_p \iff \forall e \in E, \lambda \leq \lambda_p. \)

\(\langle y, g(y) \rangle = \lambda_p \iff \forall e \in E, (\lambda_p - \lambda_i) y_i^2 = 0 \iff \forall e \in E, \lambda_i = \lambda_p. \)

\(\langle y, g(y) \rangle = \lambda_p \iff y \in \text{Vect}(e_1, e_2, \ldots, e_p) \)

Comme \(\forall e \in E, \lambda \leq \lambda_p : \forall e \in E, \langle y, g(y) \rangle = \lambda_p \text{ et } \text{Vect}(e_1, e_2, \ldots, e_p) \text{ est contenu dans } \text{SEP}(f, \lambda_p). \) Notons que cette inclusion est une égalité.
Soit \(\lambda \in \mathbb{C} \) un élément de \(E \).

\[g = \sum_{i=1}^{p} \lambda_i \mathbf{e}_i \quad \Rightarrow \quad g = \sum_{i=1}^{p} \lambda_i \sum_{k=1}^{n} \mathbf{e}_i = \sum_{i=1}^{p} \sum_{k=1}^{n} \lambda_i \mathbf{e}_i = \lambda_0 \sum_{k=1}^{n} \mathbf{e}_i. \]

\[\text{SEP}(g, \lambda) \quad \Rightarrow \quad \sum_{i=1}^{p} \lambda_i \mathbf{e}_i = \sum_{i=1}^{p} \sum_{k=1}^{n} \lambda_i \mathbf{e}_i \quad \Rightarrow \quad \text{VEC}(g, \lambda, \mathbb{P}), \quad \text{si} \quad \lambda_0 \neq 0, \quad \text{VEC}(g, \lambda, \mathbb{P}), \quad (\lambda_0 - \lambda_0) \lambda_0 = 0. \]

\[\text{SEP}(g, \lambda) \quad \Rightarrow \quad \text{VEC}(g, \lambda, \mathbb{P}), \quad \lambda_0 = 0 \quad \Rightarrow \quad g \in \text{VEC}(e_r, e_r, ..., e_p) \quad \Rightarrow \quad \text{SEP}(g, \lambda) = \text{VEC}(e_{r_1}, ..., e_{r_p}) \quad \Rightarrow \quad \lambda_0 = \lambda_0. \]

\[\text{dans} \quad \mathbf{y} \in \mathbb{E}, \quad \|\mathbf{y}\| = 1 \quad \text{et} \quad \langle \mathbf{y}, f_{(g)} \rangle = \lambda_0 \quad \Rightarrow \quad \{\mathbf{y} \in \mathbb{E}, \quad \|\mathbf{y}\| = 1 \quad \text{et} \quad \langle \mathbf{y}, f_{(g)} \rangle = \lambda_0 \mathbf{y}. \]

85) a) Supposons \(\lambda_0 \leq 0 \). Supposons \(\{\mathbf{y} \in \mathbb{E}, \quad \|\mathbf{y}\| = 1 \} = \lambda_0 \leq 0 \).

Alors \(\forall \mathbf{y} \in \mathbb{E}, \quad \|\mathbf{y}\| = 1 \Rightarrow \quad \langle \mathbf{y}, f_{(g)} \rangle \leq 0. \)

b) Supposons \(\text{et} \text{ii}) \Rightarrow \text{et} \text{iii}) \Rightarrow \langle \mathbf{y}, f_{(g)} \rangle = 0 = \|\mathbf{x}\|^2. \)

dans (i) et (iii) sont définit et ainsi \(F(\mathbf{x}) = \mathbf{w} \mathbf{y} \).

6) L'équation est supposée être \(\text{et} \text{ii})) \Rightarrow \text{et} \text{iii}) \Rightarrow \langle \mathbf{y}, f_{(g)} \rangle \leq 0 = \|\mathbf{x}\|^2. \)

dans (i) et (iii) sont définit et ainsi \(F(\mathbf{x}) = \mathbf{w} \mathbf{y} \).

Soit \(\lambda_0 \geq 0 \), soit \(\mathbf{x} \in \mathbb{E} \).

Remarquons que \(\text{Sup} \{ \langle \mathbf{y}, f_{(g)} \rangle ; \quad \mathbf{y} \in \mathbb{E}, \quad \|\mathbf{y}\| = 1 \} = \lambda_0. \)

Ainsi (ii) \(\Rightarrow \lambda_0 \leq \|\mathbf{x}\|^2. \)

\(F(\mathbf{x}) = m(\mathbf{y}) \quad \Rightarrow \text{et} (\text{i}) \text{et} (\text{ii}) \Rightarrow \mathbf{x} = \|\mathbf{x}\|^2 \mathbf{y} \quad \text{et} \quad \lambda_0 \leq \|\mathbf{x}\|^2. \) Notons que \(\lambda_0 > 0 \)

\(F(\mathbf{x}) = m(\mathbf{y}) \Rightarrow \lambda_0 \leq \|\mathbf{x}\|^2 \) et \(\mathbf{x} \) est une valeur propre de \(f \) associée à la valeur propre \(\|\mathbf{x}\|^2 \)

\(\lambda_0 \quad \text{étant la plus grande valeur propre de} \quad f \) \(\text{et} \quad \mathbf{x} \) \(\text{et} \) \text{SEP}(f, \lambda_0) \(\Rightarrow \text{KESEP}(f, \mathbf{x}, \lambda_0) \quad \Rightarrow \text{KESEP}(f, \mathbf{x}, \lambda_0) \quad \Rightarrow \|\mathbf{x}\|^2 = \sqrt{\lambda_0}. \)
Doit \(x \) un élément de \(\mathbb{S} \) de \(\mathbb{P}(\mathbb{S}, \lambda_p) \) tel que : \(\|x\|_1 = \sum \lambda_p \). (de toute évidence un élément critique !)

\[
F(x) = N^2(\mathbb{S}) - 2 \langle x, \lambda_p \rangle + \lambda_p \|x\|^2 = N^2(\mathbb{S}) - 2 \lambda_p \|x\|^2 + \lambda_p^2
\]

\[
F(x) = N^2(\mathbb{S}) - \lambda_p \|x\|^2 = N^2(\mathbb{S}) - \lambda_p \sum_{i=1}^p x_i^2 = \sum_{i=1}^p \lambda_i x_i^2 - \lambda_p \sum_{i=1}^p \lambda_i^2
\]

Ainsi \(x \in \mathbb{S} \) de \(\mathbb{P}(\mathbb{S}, \lambda_p) \) et \(\forall \lambda \in E \), \(F(x) = \mu(\mathbb{S}) \Leftrightarrow \left\{ \begin{array}{l}
\|x\|_1 = \sum \lambda_p.
\end{array} \right. \]

Q6

a) Pour \(X = \left(\begin{array}{c}
\frac{1}{2} \\
\vdots \\
\frac{1}{2}
\end{array} \right) \) et \(Y = \left(\begin{array}{c}
\frac{1}{2} \\
\vdots \\
\frac{1}{2}
\end{array} \right) = \pi X.
\]

\(\forall \mathbb{E}, \lambda \mathbb{D}, \quad y_i = \sum_{j=1}^p m_{ij} x_j = \sum_{j=1}^p m_{ij} = d . \quad \pi x = x \) et \(x \notin \mathbb{D} \).

b) \(\pi x = \lambda x \) donc : \(\sum_{i=1}^p m_{ij} x_j = \lambda x \).

\[
1 \leq k \leq 1 \quad \Xi \lambda_{k+1} = k \sum_{i=1}^p m_{ij} x_j = \sum_{i=1}^p m_{ij} |x_j| \leq \sum_{i=1}^p m_{ij} = \sum_{i=1}^p m_{ij} = \|x\|_1 \quad (\Pi)
\]

Ainsi \(\|k\|_1 \leq k \) avec \(k_{i+1} = \pi x \) avec \(x \neq \emptyset \).

Supposons \(k = \lambda x \) l'unique vecteur (\(\Pi \))

\[
|k_{i+1}| = \|k\|_1 = \sum_{j=1}^p m_{ij} x_j = |\sum_{j=1}^p m_{ij} |x_j| \leq \sum_{j=1}^p m_{ij} \sum_{j=1}^p |x_j| = |x_1| \sum_{j=1}^p m_{ij} = |\sum_{j=1}^p m_{ij} x_j|
\]

Ainsi : \(|k| \leq \|k\|_1 \sum_{j=1}^p m_{ij} x_j = \sum_{j=1}^p |m_{ij} x_j| = \sum_{j=1}^p |m_{ij} x_j| \)

\[
\forall \pi x \in \mathbb{S}, \quad k_{i+1} = \sum_{j=1}^p m_{ij} x_j
\]

En particuliers pour tout \(j \) dans \(\{1, \ldots, p\} \), \(m_{1i} x_i, m_{2i} x_i, \ldots, m_{pi} x_i \) tout même vecteur ; donc \(x_1, x_2, \ldots, x_p \) est même vecteur (\(x \in \mathbb{S}, \lambda \mathbb{D}, \quad m_{ij} > 0 \)).

\[
\|k\|_1 = \|k\|_1 = \sum_{j=1}^p m_{ij} x_j = \left| \sum_{j=1}^p m_{ij} x_j \right| = \sum_{j=1}^p m_{ij} x_j \geq \sum_{j=1}^p m_{ij} x_j
\]

\[
\forall \pi x \in \mathbb{S}, \quad |k|_{\leq 0} \quad (\Xi)
\]

\[\]
\[\sum_{j=1}^{p} m_{ij} (1x_j - 1x_i) = \sum_{j=1}^{p} m_{ij} |1x_j| - \left(\sum_{j=1}^{p} m_{ij} \right) |1x_i| = \sum_{j=1}^{p} m_{ij} (|1x_j| - |1x_i|) \]

\(a \) a aussi : \(\sum_{j=1}^{p} m_{ij} (|1x_i| - |1x_j|) = 0 \) et \(\forall j \in [1, p], m_{ij} (|1x_i| - |1x_j|) > 0 \).

\(\text{D'où} \quad \forall j \in [1, p], m_{ij} (|1x_i| - |1x_j|) = 0 \) et \(m_{ij} > 0 \).

\(\text{Ainsi} \quad \forall j \in [1, p], |1x_i| - |1x_j| = 0. \quad \forall j \in [1, p], |1x_j| = |x_i|. \)

\(\forall j \in [1, p], \mathcal{E} x_j = \mathcal{E} x_i. \quad \forall j \in [1, p], x_j = x_i. \)

\(\text{Ainsi} \quad x = x_i \left(\frac{1}{3} \right). \)

\(\mathcal{E} x \mathcal{E} x = \mathcal{E} x \mathcal{E} \left(\frac{1}{3} \right) = \mathcal{E} x \left(\frac{1}{3} \right) = x; \quad (\lambda - 1) x = 0 \) et \(x \neq 0. \quad \lambda = 3. \)

\(\text{Nous avons aussi dédui que} \quad \forall x \in \mathbb{F}_p, x \neq 0 \) et \(\mathcal{E} x \mathcal{E} x = x \Rightarrow x \in \text{Vect}(\left\{ \frac{1}{3} \right\}). \)

\(\text{D'où} \quad \text{SEP}(\mathbb{F}_p, 3) \supset \text{Vect}(\left\{ \frac{1}{3} \right\}). \) (Ceci donne aussi \(\dim \text{SEP}(\mathbb{F}_p, 3) = 1. \)

\(\text{Comme aussi} \quad \text{SEP}(\mathbb{F}_p, 3) \geq 2 \quad (\text{SEP}(\mathbb{F}_p, 3) \neq \{0\} \Rightarrow \dim \text{SEP}(\mathbb{F}_p, 3) = 1). \)

\(\text{Puisque} \quad \text{SEP}(\mathbb{F}_p, 3) = \text{Vect}(\left\{ \frac{1}{3} \right\}). \)

\(\text{Ce qui précède montre que} \quad \lambda_p = 3 ; \text{en effet} \quad \forall x \text{ valeur propre de} \quad \lambda \text{et toute valeur propre de} \quad \lambda \text{a une valeur absolue inférieure ou égale à} \quad 1. \)

\(\text{Puisque} \quad \lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_p \leq \lambda_1 < \lambda_p = 1 \) car le premier axe propre associé à la valeur propre 1 est de dimension 1.

\(\text{Ainsi} \quad \forall x \in \mathbb{F}_p^p, \text{F}(x) = m(\xi) \iff \begin{cases} \| x \| = \sqrt{\lambda_1} = 1 \quad \text{et} \\ x \in \text{SEP}(\mathbb{F}_p, \lambda_1) = \text{SEP}(\mathbb{F}_p, 1) \end{cases} \)

\(\text{Notez que} \quad \| (x_1, x_2, \ldots, x_p) \| = \sqrt{\sum_{i=1}^{p} x_i^2} = \sqrt{\lambda_1}. \)

\(\text{Ainsi les vecteurs unitaires de} \quad \text{SEP}(\mathbb{F}_p, 3) \quad \text{sont} \quad \frac{1}{\sqrt{3}} (3, 2, 0, \ldots) \quad \text{et} \quad \frac{1}{\sqrt{3}} (3, 2, \ldots). \)

\(\forall x \in \mathbb{F}_p^p, \text{F}(x) = m(\xi) \iff x = \frac{1}{\lambda_1} (3, 2, \ldots) \quad \text{ou} \quad x = - \frac{1}{\lambda_1} (3, 2, \ldots). \)
doit u en dépendant de \(T(E) \). Soit \(E \), \(u = u_k \).

\[
\begin{align*}
\text{si } f \in \mathbb{N}^d \quad \Rightarrow \quad m(f) = N^d(f - u_k) \quad \Rightarrow \quad F(u) = m(f) \quad \Rightarrow \quad x = \frac{1}{\|f\|} \quad (1, 2, \ldots, 3).
\end{align*}
\]

Posons : \(a = \frac{1}{\|f\|} \quad (1, 2, \ldots, 3) \) et notons que : \(x = \frac{1}{\|f\|} \quad (1, 2, \ldots, 3) \Rightarrow u_k = u_0 \), c'est-à-dire que \(x = a \) ou \(u = -a \) \(\Leftrightarrow \) \(u_k = u_0 \).

\(\square \) c'est-à-dire que \(u_k = u_0 \).

Supposons \(u_k = u_0 \). Veuillez, \(\langle x, y \rangle = \langle 0, y \rangle = a \). En posant \(y = a \) on obtient :

\[
\langle x, a \rangle = \langle a, a \rangle = a = \|a\|^2 a = a.
\]

Comme \(a \) n'est pas nul, \(\langle x, a \rangle \) est différent de 0. Donc : \(x = a \) avec \(a = \frac{1}{\|f\|} \quad (1, 2, \ldots, d) \).

Alors, \(\forall y \in E, \langle x, y \rangle = a \).

\[
\forall y \in E, \langle x, y \rangle = a = \langle 0, y \rangle = a.
\]

\[
\forall y \in E, \langle x, y \rangle = a = \langle 0, y \rangle = a.
\]

\(\iff \langle x, a \rangle = \langle a, a \rangle = a = \|a\|^2 a = a. \)

Ainsi \(m(f) = N^d(f - u) \quad \Rightarrow \quad x = a \) ou \(u = -a \) \(\Leftrightarrow \) \(u_k = u_0 \).

D'ordre à orthogonale à \(T(E) \) tel que \(m(f) = N^d(f - u) \) est \(u_k = \frac{1}{\|f\|} (1, 3, \ldots, 1) \).

\[
\text{doit } y = (y_1, y_2, \ldots, y_3) \text{ un élément de } \mathbb{R}^d. \text{ Rappelons que l'a a par} \ a = \frac{1}{\|f\|} (1, 2, \ldots, 3).
\]

\[
\frac{1}{\|f\|} (1, 2, \ldots, 3) \quad (y_1, y_2, \ldots, y_3) = \langle y, a \rangle = \frac{1}{\|f\|} (y_1 + y_2 + \ldots + y_3) = \frac{1}{\|f\|} (1, 2, \ldots, 3)
\]

\[
\frac{1}{\|f\|} (1, 2, \ldots, 3) \quad (y_1, y_2, \ldots, y_3) = \frac{1}{\|f\|} (y_1 + y_2 + \ldots + y_3, y_1 + y_2 + \ldots + y_3, \ldots, y_1 + y_2 + \ldots + y_3)
\]

Ainsi la matrice de \(u_k \), dans la base canonique est

\[
\frac{1}{\|f\|} \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{pmatrix}
\]

Posons \(D = \text{vect}(a) \).

\(E = D \oplus D \). Soit \(y \in E \). \(y = y_1 y_2 \text{ avec } y_1 \in D, y_2 \in D \). D'où \(y \in E \), \(y_1 = \text{vect}(a). \)

\[
\frac{1}{\|f\|} (1, 2, \ldots, 3) \quad (y_1, y_2, \ldots, y_3) = \frac{1}{\|f\|} (y_1 + y_2 + \ldots + y_3, y_1 + y_2 + \ldots + y_3, \ldots, y_1 + y_2 + \ldots + y_3)
\]

Ainsi \(u_k \) est la projection orthogonale de \(E \) sur \(D = \text{vect}(a) \).

Ainsi la matrice précédente est la matrice dans la base canonique de \(E = \mathbb{R}^d \) de la projection orthogonale de \(E \) sur \(D = \text{vect}(a) \).